Gauge-Symmetry Protection Using Single-Body Terms

@article{Halimeh2021GaugeSymmetryPU,
  title={Gauge-Symmetry Protection Using Single-Body Terms},
  author={Jad C. Halimeh and Haifeng Lang and Julius Mildenberger and Zhang Jiang and Philipp Hauke},
  journal={PRX Quantum},
  year={2021}
}
Quantum-simulator hardware promises new insights into problems from particle and nuclear physics. A major challenge is to reproduce gauge invariance, as violations of this quintessential property of lattice gauge theories can have dramatic consequences, e.g., the generation of a photon mass in quantum electrodynamics. Here, we introduce an experimentally friendly method to protect gauge invariance in $\mathrm{U}(1)$ lattice gauge theories against coherent errors in a controllable way. Our… 

A resource efficient approach for quantum and classical simulations of gauge theories in particle physics

TLDR
A resource-efficient protocol to simulate LGTs with continuous gauge groups in the Hamiltonian formulation, which permits an efficient description of the magnetically-dominated regime in LGTs.

Nearly tight Trotterization of interacting electrons

TLDR
It suffices to use O gates to simulate electronic structure in the plane-wave basis with $n$ spin orbitals and $\eta$ electrons up to a negligible factor, improving the best previous result in second quantization while outperforming the first-quantized simulation when $n=\mathcal{O}\left(\eta^2\right)$.

Toward simulating quantum field theories with controlled phonon-ion dynamics: A hybrid analog-digital approach

Quantum field theories are the cornerstones of modern physics, providing relativistic and quantum mechanical descriptions of physical systems at the most fundamental level. Simulating real-time

Quantum simulation of lattice gauge theories in more than one space dimension—requirements, challenges and methods

  • E. Zohar
  • Physics
    Philosophical Transactions of the Royal Society A
  • 2021
TLDR
The essential ingredients and requirements of lattice gauge theories in more dimensions are reviewed and their meanings, the challenges they pose and how they could be dealt with, potentially aiming at the next steps of this field towards simulating challenging physical problems in analogue, or analogue-digital ways.

Stabilizing Gauge Theories in Quantum Simulators: A Brief Review

Quantum simulation is at the heart of the ongoing “second” quantum revolution, with various synthetic quantum matter platforms realizing evermore exotic condensed matter and particle physics

Stabilizing lattice gauge theories through simplified local pseudogenerators

The postulate of gauge invariance in nature does not lend itself directly to implementations of lattice gauge theories in modern setups of quantum synthetic matter. Unavoidable gauge-breaking errors

Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions: (II) Single-Baryon $\beta$-Decay in Real Time

A framework for quantum simulations of real-time weak decays of hadrons and nuclei in a 2-flavor lattice theory in one spatial dimension is presented. A single generation of the Standard Model is

Toward Quantum Computing Phase Diagrams of Gauge Theories with Thermal Pure Quantum States

The phase diagram of strong interactions in nature at finite temperature and chemical potential remains largely unexplored theoretically due to inadequacy of Monte-Carlo-based computational techniques

Floquet Engineering Heisenberg from Ising Using Constant Drive Fields for Quantum Simulation

The time-evolution of an Ising model with large driving fields over discrete time intervals is shown to be reproduced by an effective XXZ-Heisenberg model at leading order in the inverse field

Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions: (I) Axial Gauge

Tools necessary for quantum simulations of 1 + 1 dimensional quantum chromodynamics are developed. When formulated in axial gauge and with two flavors of quarks, this system requires 12 qubits per

References

SHOWING 1-10 OF 85 REFERENCES

Proceedings of the National Academy of Sciences, USA

Phys

  • Rev. X 3, 041013
  • 2013

Communications in Mathematical Physics 354

  • 809
  • 2017

QUANTUM 3

    Nuclear Physics B 492

    • 455
    • 1997

    Annalen der Physik 525

    • 777
    • 2013

    Physical Review Letters 63

    • 1989

    16 and K

    • Yuasa, Quantum 3, 152
    • 2019

    Computer Physics Communications 183

    • 1760
    • 2012

    Computer Physics Communications 184

    • 1234
    • 2013
    ...