Gauge-Invariant Ideals in the C*-Algebras of Finitely Aligned Higher-Rank Graphs

  title={Gauge-Invariant Ideals in the C*-Algebras of Finitely Aligned Higher-Rank Graphs},
  author={Aidan Sims},
  journal={Canadian Journal of Mathematics},
  pages={1268 - 1290}
  • A. Sims
  • Published 27 May 2003
  • Mathematics
  • Canadian Journal of Mathematics
Abstract We produce a complete description of the lattice of gauge-invariant ideals in ${{C}^{*}}(\Lambda )$ for a finitely aligned $k$ -graph $\Lambda $ . We provide a condition on $\Lambda $ under which every ideal is gauge-invariant. We give conditions on $\Lambda $ under which ${{C}^{*}}(\Lambda )$ satisfies the hypotheses of the Kirchberg–Phillips classification theorem. 

Structure theory and stable rank for C*-algebras of finite higher-rank graphs

Abstract We study the structure and compute the stable rank of $C^{*}$-algebras of finite higher-rank graphs. We completely determine the stable rank of the $C^{*}$-algebra when the $k$-graph either

Simplicity of the C*-algebras of skew product k-graphs

We consider conditions on a $k$-graph $\Lambda$, a semigroup $S$ and a functor $\eta : \Lambda \to S$ which ensure that the $C^*$-algebra of the skew-product graph $\Lambda \times_\eta S$ is simple.


  • B. Burgstaller
  • Mathematics
    Journal of the Australian Mathematical Society
  • 2008
Abstract Let $\mathcal {O}$ be a higher rank Exel–Laca algebra generated by an alphabet $\mathcal {A}$. If $\mathcal {A}$ contains d commuting isometries corresponding to rank d and the transition

Spectral triples for higher-rank graph $C^*$-algebras

In this note, we present a new way to associate a spectral triple to the noncommutative $C^*$-algebra $C^*(\Lambda)$ of a strongly connected finite higher-rank graph $\Lambda$. We generalize a

$\mathbb{N}$-Graph $C^*$-Algebras

In this paper we generalize the notion of a k-graph into (countable) infinite rank. We then define our C∗-algebra in a similar way as in kgraph C∗-algebras. With this construction we are able to find

Twisted $C^*$-algebras associated to finitely aligned higher-rank graphs

We introduce twisted relative Cuntz-Krieger algebras associated to finitely aligned higher-rank graphs and give a comprehensive treatment of their fundamental structural properties. We establish

Twisted relative Cuntz-Krieger algebras associated to finitely aligned higher-rank graphs

To each finitely aligned higher-rank graph $\Lambda$ and each $\mathbb{T}$-valued 2-cocycle on $\Lambda$, we associate a family of twisted relative Cuntz-Krieger algebras. We show that each of these

Endomorphisms and Modular Theory of 2-Graph C*-Algebras

In this paper, we initiate the study of endomorphisms and modular theory of the graph C*-algebras $\O_{\theta}$of a 2-graph $\Fth$ on a single vertex. We prove that there is a semigroup isomorphism


Abstract We construct a representation of each finitely aligned aperiodic k-graph Λ on the Hilbert space $\mathcal{H}^{\rm ap}$ with basis indexed by aperiodic boundary paths in Λ. We show that the

Higher-rank graph algebras are iterated Cuntz-Pimsner algebras

Given a finitely aligned $k$-graph $\Lambda$, we let $\Lambda^i$ denote the $(k-1)$-graph formed by removing all edges of degree $e_i$ from $\Lambda$. We show that the Toeplitz-Cuntz-Krieger algebra



The ideal structure of the $C\sp *$-algebras of infinite graphs

We classify the gauge-invariant ideals in the C*-algebras of infinite directed graphs, and describe the quotients as graph algebras. We then use these results to identify the gauge-invariant


Abstract We consider the higher-rank graphs introduced by Kumjian and Pask as models for higher-rank Cuntz–Krieger algebras. We describe a variant of the Cuntz–Krieger relations which applies to

* -algebras of Finitely Aligned Higher-rank Graphs

We generalise the theory of Cuntz-Krieger families and graph algebras to the class of finitely aligned k-graphs. This class contains in particular all row-finite k-graphs. The Cuntz-Krieger relations

The primitive ideal space of the $C^{*}$-algebras of infinite graphs

For any countable directed graph E we describe the primitive ideal space of the corresponding generalized Cuntz-Krieger algebra C*(E).

Coverings of k-graphs

The range of K-invariants for C*-algebras of infinite graphs

It is shown that for any pair (K 0 ,K 1 ) of countable abelian groups, with K 1 free abelian, and any element Ξ ∈ K 0 there exists a purely infinite and simple, stable C * -algebra C * (E)

Relative Cuntz-Krieger algebras of finitely aligned higher-rank graphs

We define the relative Cuntz-Krieger algebras associated to finitely aligned higher-rank graphs. We prove versions of the gauge-invariant unique- ness theorem and the Cuntz-Krieger uniqueness theorem

The Toeplitz algebra of a Hilbert bimodule

Suppose a C*-algebra A acts by adjointable operators on a Hilbert A-module X. Pimsner constructed a C*-algebra O_X which includes, for particular choices of X, crossed products of A by Z, the Cuntz

On higher rank graph C ∗ -algebras

Given a row-finite k-graph Λ with no sources we investigate the K-theory of the higher rank graph C *-algebra, C * (Λ). When k = 2 we are able to give explicit formulae to calculate the K-groups of C


NSKI Abstract. We prove versions of the fundamental theorems about Cuntz-Krieger algebras for the C -algebras of row-finite graphs: directed graphs in which each vertex emits at most finitely many