Gap Universality of Generalized Wigner and beta-Ensembles

@article{Erds2012GapUO,
  title={Gap Universality of Generalized Wigner and beta-Ensembles},
  author={L. Erdős and H. Yau},
  journal={arXiv: Probability},
  year={2012}
}
  • L. Erdős, H. Yau
  • Published 2012
  • Mathematics
  • arXiv: Probability
  • We consider generalized Wigner ensembles and general beta-ensembles with analytic potentials for any beta larger than 1. The recent universality results in particular assert that the local averages of consecutive eigenvalue gaps in the bulk of the spectrum are universal in the sense that they coincide with those of the corresponding Gaussian beta-ensembles. In this article, we show that local averaging is not necessary for this result, i.e. we prove that the single gap distributions in the bulk… CONTINUE READING
    53 Citations
    Universality for a class of random band matrices
    • 41
    • PDF
    Edge Universality of Beta Ensembles
    • 115
    • PDF
    Bulk universality for deformed Wigner matrices
    • 57
    • PDF
    Extreme gaps between eigenvalues of Wigner matrices
    • 27
    • Highly Influenced
    • PDF
    Random matrices, log-gases and Holder regularity
    • 6
    • PDF
    Universality for random matrices and log-gases
    • 24
    • PDF

    References

    SHOWING 1-10 OF 58 REFERENCES
    A comment on the Wigner-Dyson-Mehta bulk universality conjecture for Wigner matrices
    • 19
    • PDF
    Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices
    • 210
    • PDF
    Edge Universality of Beta Ensembles
    • 115
    • PDF
    Universality of General β-Ensembles
    • 84
    • PDF
    Universality of local spectral statistics of random matrices
    • 110
    • PDF
    Universality of general $\beta$-ensembles
    • 88
    • PDF
    Universality of Sine-Kernel for Wigner Matrices with a Small Gaussian Perturbation
    • 83
    • PDF
    Universality of random matrices and local relaxation flow
    • 205
    • PDF
    Bulk Universality for Wigner Matrices
    • 185
    • PDF