Corpus ID: 119323042

Gaiotto's Lagrangian subvarieties via loop groups

@article{Li2017GaiottosLS,
  title={Gaiotto's Lagrangian subvarieties via loop groups},
  author={Y. Li},
  journal={arXiv: Algebraic Geometry},
  year={2017}
}
  • Y. Li
  • Published 2017
  • Mathematics, Physics
  • arXiv: Algebraic Geometry
  • The purpose of this note is to give a simple proof of the fact that a certain substack, defined in [2], of the moduli stack $T^{\ast}Bun_G(\Sigma)$ of Higgs bundles over a curve $\Sigma$, for a connected, simply connected semisimple group $G$, possesses a Lagrangian structure. The substack, roughly speaking, consists of images under the moment map of global sections of principal $G$-bundles over $\Sigma$ twisted by a smooth symplectic variety with a Hamiltonian $G$-action. 
    1 Citations
    Higgs bundles, Lagrangians and mirror symmetry
    • 7
    • PDF

    References

    SHOWING 1-9 OF 9 REFERENCES
    Gaiotto’s Lagrangian Subvarieties via Derived Symplectic Geometry
    • 7
    • Highly Influential
    • PDF
    The global nilpotent variety is Lagrangian
    • 37
    • Highly Influential
    • PDF
    Spinors, Lagrangians and rank 2 Higgs bundles
    • 9
    • Highly Influential
    • PDF
    $B$-structures on $G$-bundles and local triviality
    • 106
    • PDF
    Shifted symplectic structures
    • 243
    • PDF
    S-duality of boundary conditions and the Geometric Langlands program
    • 28
    • Highly Influential
    • PDF
    Halbeinfache Gruppenschemata über Dedekindringen
    • 93
    Harder : Halbeinfache gruppenschemata über Dedekindringen
    • Invent . Math .
    Harder : Halbeinfache gruppenschemata über Dedekindringen
    • Invent . Math .