Corpus ID: 4804172

GOexpress: identify and visualise robust gene ontology signatures through supervised classification of gene expression data

@inproceedings{Magee2016GOexpressIA,
  title={GOexpress: identify and visualise robust gene ontology signatures through supervised classification of gene expression data},
  author={D. A. Magee and N. Nalpas and A. Parnell and S. Gordon and D. E. MacHugh},
  year={2016}
}
  • D. A. Magee, N. Nalpas, +2 authors D. E. MacHugh
  • Published 2016
  • 3 Quick start 4 3.1 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2 Main analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2.1 Preparing the grouping factor to analyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2.2 Running the random forest algorithm using local annotations . . . . . . . . . . . . . . . . . . 5 3.2.3 Important notes in the absence of… CONTINUE READING

    Figures from this paper.

    References

    Publications referenced by this paper.
    How well does each gene in the dataset classify predefined groups of samples?
    • 1984