Géométrie d'Arakelov et hauteurs canoniques sur des variétés semi-abéliennes

@article{ChambertLoir1998GomtrieDE,
  title={G{\'e}om{\'e}trie d'Arakelov et hauteurs canoniques sur des vari{\'e}t{\'e}s semi-ab{\'e}liennes},
  author={A. Chambert-Loir},
  journal={Mathematische Annalen},
  year={1998},
  volume={314},
  pages={381-401}
}
Canonical heights and Arakelov geometry on semi-abelian varieties. In this paper, we propose a construction of the canonical heights on an extension of an abelian variety by the multiplicative group, in the framework of Arakelov geometry. These canonical heights are the sum of some height coming from the abelian variety and something we call a relative height. We finally give some complements about the points whose relative height is zero. 
10 Citations
Points of Small Height on Semiabelian Varieties
Arakelov geometry, heights, equidistribution, and the Bogomolov conjecture
  • 3
  • Highly Influenced
  • PDF
Mordell-Lang plus Bogomolov
  • 51
  • PDF
Pink's conjecture on unlikely intersections and families of semi-abelian varieties
  • 3
  • PDF
The bounded height conjecture for semiabelian varieties
  • L. Kuehne
  • Mathematics
  • Compositio Mathematica
  • 2020
  • 2
Points of Small Height on Semiabelian Varieties
  • 2
  • PDF
Caractérisation des exemples de Lattès et de Kummer
  • 11
  • PDF
Points de petite hauteur sur les variétés semi-abéliennes
  • 35
  • PDF

References

SHOWING 1-7 OF 7 REFERENCES