G\'eom\'etrisation du lemme fondamental pour l'alg\`ebre de Hecke

@article{Bouthier2015GeometrisationDL,
  title={G\'eom\'etrisation du lemme fondamental pour l'alg\`ebre de Hecke},
  author={A. Bouthier},
  journal={arXiv: Algebraic Geometry},
  year={2015},
  pages={1}
}
  • A. Bouthier
  • Published 2015
  • Mathematics
  • arXiv: Algebraic Geometry
This article is the third one of the series \cite{Bt1}-\cite{Bt2} on Hitchin-Frenkel-Ngo fibration and Vinberg semigroup. Ngo \cite{N} proved the fundamental lemma for Lie algebras in equal characteristics as a consequence of geometric stabilization. This article show the geometric stabilization in the group case which was conjectured by Frenkel and Ngo \cite{FN}. Along the proof, we establish an identity between orbital integrals, which is analog to Langlands-Shelstad fundamental lemma. From… Expand
3 Citations

References

SHOWING 1-10 OF 46 REFERENCES
Le lemme fondamental pour les groupes unitaires
  • 78
  • PDF
Le lemme fondamental pour les algèbres de Lie
  • 100
Regular elements of semisimple algebraic groups
  • 599
  • PDF
La Conjecture de Weil. II
  • 349
  • Highly Influential
  • PDF
NÉRON MODELS
  • 491
  • PDF
Base change for unit elements of Hecke algebras
  • 47
  • PDF
Moduli spaces of principal F-bundles
  • 45
  • PDF
...
1
2
3
4
5
...