Fusion products of Kirillov-Reshetikhin modules and fermionic multiplicity formulas

@article{Ardonne2007FusionPO,
  title={Fusion products of Kirillov-Reshetikhin modules and fermionic multiplicity formulas},
  author={E. Ardonne and R. Kedem},
  journal={Journal of Algebra},
  year={2007},
  volume={308},
  pages={270-294}
}
  • E. Ardonne, R. Kedem
  • Published 2007
  • Mathematics
  • Journal of Algebra
  • Abstract We give a complete description of the graded multiplicity space which appears in the Feigin–Loktev fusion product of graded Kirillov–Reshetikhin modules for all simple Lie algebras. This construction is used to obtain an upper bound formula for the fusion coefficients in these cases. The formula generalizes the case of g = A r of our previous paper, where the multiplicities are generalized Kostka polynomials. In the case of other Lie algebras, the formula is the fermionic side of the X… CONTINUE READING
    30 Citations
    Fusion products of Kirillov-Reshetikhin modules and the X = M conjecture
    • 20
    • PDF
    Proof of the combinatorial Kirillov-Reshetikhin conjecture
    • 47
    • PDF
    Fusion products and toroidal algebras
    • 10
    • PDF
    Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions
    • 147
    • PDF
    The PBW Filtration, Demazure Modules and Toroidal Current Algebras ?
    • 9
    • PDF
    Quantum cluster algebras and fusion products
    • 11
    • PDF
    Quantum Q-systems and fermionic sums -- the non-simply laced case
    • 2
    • PDF

    References

    SHOWING 1-10 OF 54 REFERENCES