Fundamentals of diagnostic ultrasonography.

  • J P Noce
  • Published 1990 in Biomedical instrumentation & technology

Abstract

Diagnostic ultrasonography uses acoustical waves in the frequency range of 1 to 20 MHz. These waves obey Snell's law of reflection and refraction, which are rules ordinary to wave behavior. In ultrasound, the analogy to momentum is acoustic impedance. The acoustic impedance, Z, is equal to the density, p, times velocity, v. The ultrasound transducer converts electrical energy into ultrasound energy and vice versa. The transducer usually consists of a piezoelectric crystal composed of such ceramic materials as barium titanate, lead titanate, zirconate, or lead metaniobate. Five basic ultrasonic scanning modes play the major roles in clinical applications. A-mode, or amplitude-mode, scanning measures the tissue discontinuity along the scan axis. B-mode scanning produces a two-dimensional image of the tissue under study by combining A-mode signals from various directions through mechanical transducer scanning. M-mode, or time motion scanning, is an extension of the A-mode approach in which a single stationary transducer is used. The depth of the echo is displayed on the vertical axis; the brightness of the oscilloscope display is modulated by the echo amplitude. Real-time scanning, or rapid B-scanning, techniques provide continuous data acquisition at a rate sufficient to give the impression of the instantaneous motion of moving structures. Doppler scanning relies on the presence of motion. The Doppler effect occurs when there is relative motion between the source of sound and the receiver of the sound, causing a change in the detected frequency of the sound source.

Cite this paper

@article{Noce1990FundamentalsOD, title={Fundamentals of diagnostic ultrasonography.}, author={J P Noce}, journal={Biomedical instrumentation & technology}, year={1990}, volume={24 6}, pages={456-9} }