Functions of Perturbed Dissipative Operators

  title={Functions of Perturbed Dissipative Operators},
  author={A. B. Aleksandrov and V. V. Peller},
We generalize our earlier results to the case of maximal dissipative operators. We obtain sharp conditions on a function analytic in the upper half-plane to be operator Lipschitz. We also show that a Hölder function of order α, 0 < α < 1, that is analytic in the upper half-plane must be operator Hölder of order α. More general results for arbitrary moduli of continuity will also be obtained. Then we generalize these results to higher order operator differences. We obtain sharp conditions for… CONTINUE READING

From This Paper

Topics from this paper.


Publications referenced by this paper.
Showing 1-10 of 17 references

North-Holland Publ

  • B. Sz.-Nagy, C. Foiaş, Harmonic analysis of operators on Hilbert space
  • Co., Amsterdam–London,
  • 1970
Highly Influential
4 Excerpts

Farforovskaya, Operator Hölder functions, Algebra i Analiz

  • NF L.N. Nikol′skaya, B Yu.
  • English transl. St. Petersburg Math. J
  • 2010

Functions of perturbed operators, C

  • A. B. Aleksandrov, V. V. Peller
  • R. Math. Acad. Sci. Paris
  • 2009

Sukochev, Operator integrals, spectral shift and spectral flow, Canad

  • N. A. Azamov, A. L. Carey, P. G. Dodds, A F.
  • J. Math
  • 2009


  • R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren Math. Wiss., Bd
  • Springer-Verlag, Berlin,
  • 1993

Naboko, Estimates in operator classes for the difference of functions from a Pick class of accretive operators, Funktsional

  • S N.
  • Anal. i Prilozhen
  • 1990

Solomyak, A functional model for dissipative operators. A coordinate-free approach, Zap

  • B M.
  • Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov…
  • 1989

Peller, For which f does A − B ∈ Sp imply that f(A) − f(B) ∈ Sp? Operators in Indefinite Metric Spaces, Scattering Theory and other Topics (Bucharest

  • V V.
  • Oper. Theory Adv. Appl.,
  • 1985

Similar Papers

Loading similar papers…