Freezing of fluids confined between mica surfaces.

Abstract

Using grand ensemble simulations, we show that octamethyl-cyclo-tetra-siloxane (OMCTS) confined between two mica surfaces can form a variety of frozen phases which undergo solid-solid transitions as a function of the separation between the surfaces. For atomically smooth mica surfaces, the following sequence of transitions 1[triangle up] --> 1[triangle up]b --> 2B --> 2 square --> 2[triangle up] are observed in the one- and two-layered regimes, where n[triangle up], n[square], and nB denote triangular, square, and buckled phases, respectively, with the prefix n denoting the number of confined layers. The presence of potassium on mica is seen to have a strong influence on the degree of order induced in the fluid. The sequence of solid-solid transitions that occurs with the smooth mica surface is no longer observed. When equilibrated with a state point near the liquid-solid transition, a counterintuitive freezing scenario is observed in the presence of potassium. Potassium disrupts in-plane ordering in the fluid in contact with the mica surface, and freezing is observed only in the inner confined layers. The largest mica separations at which frozen phases were observed ranged from separations that could accommodate six to seven fluid layers. The extent of freezing and the square-to-triangular lattice transition was found to be sensitive to the presence of potassium as well as the thermodynamic conditions of the bulk fluid. The implications of our results on interpretation of surface force experiments as well as the generic phase behavior of confined soft spheres is discussed.

Cite this paper

@article{Ayappa2007FreezingOF, title={Freezing of fluids confined between mica surfaces.}, author={K Ganapathy Ayappa and Ratan Kishore Mishra}, journal={The journal of physical chemistry. B}, year={2007}, volume={111 51}, pages={14299-310} }