Free rational points on smooth hypersurfaces

@article{Browning2019FreeRP,
  title={Free rational points on smooth hypersurfaces},
  author={T. Browning and W. Sawin},
  journal={arXiv: Number Theory},
  year={2019}
}
Motivated by a recent question of Peyre, we apply the Hardy-Littlewood circle method to count "sufficiently free" rational points of bounded height on arbitrary smooth projective hypersurfaces of low degree that are defined over the rational numbers. 
1 Citations
Equidistribution and freeness on Grassmannians
  • Highly Influenced
  • PDF

References

SHOWING 1-10 OF 12 REFERENCES
Free rational curves on low degree hypersurfaces and the circle method
  • 5
  • PDF
Rational points of bounded height on Fano varieties
  • 306
  • Highly Influential
Forms in many variables
  • B. Birch
  • Mathematics
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
  • 1962
  • 197
  • Highly Influential
Cubic forms in 14 variables
  • 41
Libert\'e et accumulation
  • 6
  • PDF
An Introduction to the Geometry of Numbers
  • 1,133
  • Highly Influential
  • PDF
Liberté et accumulation
  • Documenta Math. 22
  • 2017
HAUTEURS ET MESURES DE TAMAGAWA SUR LES VARIÉTÉS DE FANO
  • 212
  • Highly Influential
...
1
2
...