Frame expansions in separable Banach spaces

  title={Frame expansions in separable Banach spaces},
  author={Pete Casazza Ole Christensen Diana T. Stoeva},
  • Pete Casazza Ole Christensen Diana T. Stoeva
  • Published 2008
Banach frames are defined by straightforward generalization of (Hilbert space) frames. We characterize Banach frames (and Xdframes) in separable Banach spaces, and relate them to series expansions in Banach spaces. In particular, our results show that we can not expect Banach frames to share all the nice properties of frames in Hilbert spaces. 
Highly Cited
This paper has 17 citations. REVIEW CITATIONS

From This Paper

Topics from this paper.


Publications referenced by this paper.
Showing 1-10 of 15 references

An introduction to Frames and Riesz bases

  • O. Christensen
  • Birkhäuser
  • 2003
1 Excerpt

Frames for Banach spaces

  • O. Christensen
  • 1999

A basis theory primer

  • C. Heil
  • 1997
1 Excerpt

Describing functions: frames versus atomic decompositions

  • K. H. Gröchenig
  • Monatshefte für Mathematik
  • 1991

Bases in Banach spaces II

  • I. Singer
  • Ole Christensen Technical University of Denmark…
  • 1981

Classical Banach spaces 1

  • J. Lindenstrauss, L. Tzafriri
  • 1977
1 Excerpt

: A unified operator theory of generalized inverses . In “ Generalized inverses and applications ” pp . 1 – 109

  • Z. Nashed, G. F. Votruba
  • 1976

Similar Papers

Loading similar papers…