## Continuous first order logic for unbounded metric structures

- ITAÏ BEN YAACOV, BEN YAACOV
- 2009

- Published 2013

We develop Fraïssé theory, namely the theory of Fraïssé classes and Fraïssé limits, in the context of metric structures. We show that a class of finitely generated structures is Fraïssé if and only if it is the age of a separable approximately homogeneous structure, and conversely, that this structure is necessarily the unique limit of the class, and is universal for it. We do this in a somewhat new approach, in which “finite maps up to errors” are coded by approximate isometries.

@inproceedings{Tsankov2013FraisseLO,
title={Fraïssé Limits of Metric Structures},
author={Todor Tsankov},
year={2013}
}