# Fractional term structure models: No-arbitrage and consistency

@article{Ohashi2008FractionalTS, title={Fractional term structure models: No-arbitrage and consistency}, author={Alberto Ohashi}, journal={arXiv: Pricing of Securities}, year={2008} }

In this work we introduce Heath-Jarrow-Morton (HJM) interest rate models driven by fractional Brownian motions. By using support arguments we prove that the resulting model is arbitrage free under proportional transaction costs in the same spirit of Guasoni [Math. Finance 16 (2006) 569-582]. In particular, we obtain a drift condition which is similar in nature to the classical HJM no-arbitrage drift restriction. The second part of this paper deals with consistency problems related to the…

## 19 Citations

2 Fractional Brownian motion : integrals , prediction and theWick product

- Mathematics
- 2010

Motivated by empirical evidence of long range dependence in macroeconomic variables like interest rates we propose a fractional Brownian motion driven model to describe the dynamics of the short and…

Conditional Distributions of Processes Related to Fractional Brownian Motion

- MathematicsJournal of Applied Probability
- 2013

Conditional distributions for affine Markov processes are at the core of present (defaultable) bond pricing. There is, however, evidence that Markov processes may not be realistic models for short…

Stochastic evolution equations driven by Liouville fractional Brownian motion

- Mathematics
- 2010

Let H be a Hilbert space and E a Banach space. We set up a theory of stochastic integration of ℒ(H,E)-valued functions with respect to H-cylindrical Liouville fractional Brownian motion with…

Viability for Coupled SDEs Driven by Fractional Brownian Motion

- Mathematics
- 2021

In this paper, we are concerned with a class of coupled multidimensional stochastic differential equations driven by fractional Brownian motion with Hurst parameter $$H\in (1/2,1)$$
. Using pathwise…

CDS pricing with long memory via fractional Levy processes

- Mathematics
- 2014

In this paper, we consider spread rates of credit default swaps (CDSs) in a long memory fractional Levy setting, i.e. where interest and hazard rates are driven by processes whose autocovariance…

Principal Components Analysis for Semi-Martingales and Stochastic PDE

- Mathematics
- 2015

In this work, we develop a novel principal component analysis (PCA) for semimartingales by introducing a suitable spectral analysis for the quadratic variation operator. Motivated by high-dimensional…

Do Sentiment and Exchange Rate Share Memories? An Application of Multifractional Process Modeling

- Economics
- 2017

We use the notion of local Holder regularity to investigate the roughness of the pattern of EUR/USD exchange rate process as well as the corresponding investor sentiment dynamic process.…

Conditional Characteristic Functions of Molchan-Golosov Fractional Lévy Processes with Application to Credit Risk

- MathematicsJournal of Applied Probability
- 2013

Using results of fractional calculus and infinitely divisible distributions, the conditional characteristic function of integrals driven by MG-fLps is calculated to lead to important prediction results including the case of multivariate fractional Brownian motion, fractional subordinators or general fractional stochastic differential equations.

Affine representations of fractional processes with applications in mathematical finance

- MathematicsStochastic Processes and their Applications
- 2019

Indirect Inference in fractional short-term interest rate diffusions

- MathematicsMath. Comput. Simul.
- 2013

## References

SHOWING 1-10 OF 39 REFERENCES

A note on Wick products and the fractional Black-Scholes model

- EconomicsFinance Stochastics
- 2005

It is pointed out that the definition of the self-financing trading strategies and/or thedefinition of the value of a portfolio used in the above papers does not have a reasonable economic interpretation, and thus that the results in these papers are not economically meaningful.

Interest Rate Dynamics and Consistent Forward Rate Curves

- Mathematics, Economics
- 1999

We consider as given an arbitrage‐free interest rate model M, and a parametrized family of forward rate curves G. We study the question as to when the given family G is consistent with the dynamics…

Towards a general theory of bond markets

- MathematicsFinance Stochastics
- 1997

It is shown that a market is approximately complete iff an equivalent martingale measure is unique and two constructions of stochastic integrals with respect to processes taking values in a space of continuous functions are suggested.

A Characterization of Hedging Portfolios for Interest Rate Contingent Claims

- Economics, Mathematics
- 2004

We consider the problem of hedging a European interest rate contingent claim with a portfolio of zero-coupon bonds and show that an HJM type Markovian model driven by an infinite number of sources of…

FRACTIONAL BROWNIAN MOTION AND STOCHASTIC EQUATIONS IN HILBERT SPACES

- Mathematics
- 2002

In this paper, stochastic differential equations in a Hilbert space with a standard, cylindrical fractional Brownian motion with the Hurst parameter in the interval (1/2,1) are investigated.…

Ergodic theory for SDEs with extrinsic memory

- Mathematics
- 2007

We develop a theory of ergodicity for a class of random dynamical systems where the driving noise is not white. The two main tools of our analysis are the strong Feller property and topological…

The Fundamental Theorem of Asset Pricing

- Mathematics, Economics
- 1999

We saw in the previous chapter that the existence of a probability measure Q ~ P under which the (discounted) stock price process is a martingale is sufficient to ensure that the market model is…

The fundamental theorem of asset pricing for continuous processes under small transaction costs

- Mathematics, Economics
- 2010

A version of the fundamental theorem of asset pricing is proved for continuous asset prices with small proportional transaction costs. Equivalence is established between: (a) the absence of arbitrage…

Viability Theorem for SPDE's Including HJM Framework

- Mathematics
- 2004

A viability theorem is proven for the mild solution of the stochastic differential equation in a Hilbert space of the form: � dX x (t )= AX x (t)dt + b(X x (t))dt + σ(X x (t))dB(t), X x (0) = x. It…