Fractional diffusion with Neumann boundary conditions: the logistic equation
@article{Montefusco2012FractionalDW, title={Fractional diffusion with Neumann boundary conditions: the logistic equation}, author={Eugenio Montefusco and Benedetta Pellacci and Gianmaria Verzini}, journal={arXiv: Analysis of PDEs}, year={2012} }
Motivated by experimental studies on the anomalous diffusion of biological populations, we introduce a nonlocal differential operator which can be interpreted as the spectral square root of the Laplacian in bounded domains with Neumann homogeneous boundary conditions. Moreover, we study related linear and nonlinear problems exploiting a local realization of such operator as performed in [X. Cabre' and J. Tan. Positive solutions of nonlinear problems involving the square root of the Laplacian…
Figures from this paper
44 Citations
On stable solutions of boundary reaction-diffusion equations and applications to nonlocal problems with Neumann data
- Mathematics
- 2015
We study reaction-diffusion equations in cylinders with possibly nonlinear diffusion and possibly nonlinear Neumann boundary conditions. We provide a geometric Poincar\'e-type inequality and…
On the logistic equation for the fractional p-Laplacian
- Mathematics
- 2021
We consider a Dirichlet type problem for a nonlinear, nonlocal equation driven by the degenerate fractional p-Laplacian, with a logistic type reaction depending on a positive parameter. In the…
Asymptotics for logistic-type equations with Dirichlet fractional Laplace operator
- Mathematics
- 2019
We study the asymptotics of solutions of logistic type equations with fractional Laplacian as time goes to infinity and as the exponent in nonlinear part goes to infinity. We prove strong convergence…
(Non)local logistic equations with Neumann conditions
- Mathematics
- 2021
Abstract. We consider here a problem of population dynamics modeled on a logistic equation with both classical and nonlocal diffusion, possibly in combination with a pollination term. The environment…
Linear theory for a mixed operator with Neumann conditions
- MathematicsAsymptotic Analysis
- 2021
We consider here a new type of mixed local and nonlocal equation under suitable Neumann conditions. We discuss the spectral properties associated to a weighted eigenvalue problem and present a global…
Neumann fractionalp-Laplacian: Eigenvalues and existence results
- MathematicsNonlinear Analysis
- 2019
Existence of positive solutions for nonlinear fractional Neumann elliptic equations
- Mathematics
- 2018
This article is devoted to study the fractional Neumann elliptic problem ⎧⎪⎨ ⎪⎩ ε2s(−Δ)su+u = up in Ω, ∂νu = 0 on ∂Ω, u > 0 in Ω, where Ω is a smooth bounded domain of RN , N > 2s , 0 < s s0 < 1 , 1…
A logistic equation with nonlocal interactions
- Mathematics
- 2016
We consider here a logistic equation, modeling processes of nonlocal character both in the diffusion and proliferation terms. More precisely, for populations that propagate according to a Levy…
References
SHOWING 1-10 OF 36 REFERENCES
The Neumann problem for nonlocal nonlinear diffusion equations
- Mathematics
- 2008
Abstract.We study nonlocal diffusion models of the form
$$(\gamma(u))_t (t, x) = \int_{\Omega} J(x-y)(u(t, y) - u(t, x))\, dy.$$
Here Ω is a bounded smooth domain andγ is a maximal monotone graph in…
Boundary blow up solutions for fractional elliptic equations
- MathematicsAsymptot. Anal.
- 2012
This work obtains existence and boundary behavior of solution under different hypothesis on f and g, and proves uniqueness of positive solutions.
Bifurcation of stable equilibria and nonlinear flux boundary condition with indefinite weight
- Mathematics
- 2011
Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian
- Mathematics
- 2008
We use a characterization of the fractional Laplacian as a Dirichlet to Neumann operator for an appropriate differential equation to study its obstacle problem. We write an equivalent…
An Extension Problem Related to the Fractional Laplacian
- Mathematics
- 2007
The operator square root of the Laplacian (− ▵)1/2 can be obtained from the harmonic extension problem to the upper half space as the operator that maps the Dirichlet boundary condition to the…
Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations
- Mathematics
- 2010
We investigate stable solutions of elliptic equations of the type where n ≥ 2, s ∈ (0, 1), λ ≥0 and f is any smooth positive superlinear function. The operator (− Δ) s stands for the fractional…
The periodic patch model for population dynamics with fractional diffusion
- Mathematics
- 2010
Fractional diffusions arise in the study of models
from population dynamics. In this paper, we derive a class of integro-differential reaction-diffusion equations
from simple principles. We then…
Extension Problem and Harnack's Inequality for Some Fractional Operators
- Mathematics
- 2009
The fractional Laplacian can be obtained as a Dirichlet-to-Neumann map via an extension problem to the upper half space. In this paper we prove the same type of characterization for the fractional…