# Fractional cascading: I. A data structuring technique

@article{Chazelle2005FractionalCI, title={Fractional cascading: I. A data structuring technique}, author={Bernard Chazelle and Leonidas J. Guibas}, journal={Algorithmica}, year={2005}, volume={1}, pages={133-162} }

In computational geometry many search problems and range queries can be solved by performing an iterative search for the same key in separate ordered lists. In this paper we show that, if these ordered lists can be put in a one-to-one correspondence with the nodes of a graph of degreed so that the iterative search always proceeds along edges of that graph, then we can do much better than the obvious sequence of binary searches. Without expanding the storage by more than a constant factor, we…

## 288 Citations

Optimal cooperative search in fractional cascaded data structures

- Computer ScienceAlgorithmica
- 2005

This paper shows how to preprocess a variety of fractional cascaded data structures whose underlying graph is a tree so that searching can be done efficiently in parallel.

Dynamic fractional cascading

- Computer ScienceAlgorithmica
- 2005

This paper shows that fractional cascading also supports insertions into and deletions from the lists efficiently and shows that queries, insertions, and deletion into segment trees or range trees can be supported in timeO(logn log logn), whenn is the number of segments (points).

Orthogonal Range Searching

- Computer Science
- 2003

This report is a brief study of some of the techniques developed and how they can be plugged together to give various solutions for Orthogonal Range Queries.

Chapter 4 Fractional Cascading

- Computer Science, Mathematics

In this chapter, this algorithm design principle called fractional cascading is studied, which says that many problems can be solved by rst solving (recursively) a subproblem whose size is a constant fraction of the original problem size and then using this solution to get back to a solution of theOriginal problem.

A Lower Bound for Dynamic Fractional Cascading

- Computer ScienceSODA
- 2021

A lower bound of $\Omega( \log n \sqrt{\log\log n})$ is proved on the worst-case query time of dynamic fractional cascading, when queries are paths of length $O(\log n)$.

Novel Transformation Techniques Using Q-Heaps with Applications to Computational Geometry

- Mathematics, Computer ScienceSIAM J. Comput.
- 2005

A fast fractional cascading technique is developed, which uses linear space and enables sublogarithmic iterative search on catalog trees in the case when the degree of each node is bounded by $O(\log^{\epsilon}n)$ for some constant $\ep silon >0$, where $n$ is the total size of all the lists stored in the tree.

2D Generalization of Fractional Cascading on Axis-aligned Planar Subdivisions

- Computer Science, Mathematics2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)
- 2020

This paper shows that it is actually possible to circumvent the lower bound of Chazelle and Liu for axis-aligned planar subdivisions for two-dimensional fractional cascading, and presents a number of upper and lower bounds which reveal that in two-dimensions, the problem has a much richer structure.

Untangled Monotonic Chains and Adaptive Range Search

- Computer ScienceISAAC
- 2009

This work presents the first adaptive data structure for two-dimensional orthogonal range search, and presents a novel algorithm of independent interest to decompose a point set into a minimum number of untangled, similarly directed monotonic chains in O(k^2n+nlogn) time.

Lower bounds for intersection searching and fractional cascading in higher dimension

- Mathematics, Computer Science
- 2004

## References

SHOWING 1-10 OF 13 REFERENCES

Dynamic Segment Intersection Search with Applications

- Computer Science, MathematicsFOCS
- 1984

This paper presents a linear-time algorithm for the incremental set-splitting problem, and uses it for the problem in which only insertions are allowed, and gives a paradigm of solving those geometric problems by combining graph algorithms with these data structures.

Dynamization of geometric data structures

- Computer ScienceSCG '85
- 1985

An amortized analysis of update cost in fractional cascading is given and it is shown that insertions take 0( 1) isortized time and insertions and deletions take0( log log X) amortization time.

Rectilinear Line Segment Intersection, Layered Segment Trees, and Dynamization

- Computer ScienceJ. Algorithms
- 1982

Fractional cascading: II. Applications

- MathematicsAlgorithmica
- 2005

This paper presents several applications offractional cascading, a new searching technique which has been described in a companion paper. The applications center around a variety of geometric query…

Optimal Point Location in a Monotone Subdivision

- Computer ScienceSIAM J. Comput.
- 1986

A substantial refinement of the technique of Lee and Preparata for locating a point in $\mathcal{S}$ based on separating chains is exhibited, which can be implemented in a simple and practical way, and is extensible to subdivisions with edges more general than straight-line segments.

A linear-time algorithm for a special case of disjoint set union

- Computer Science, MathematicsSTOC
- 1983

A linear-time algorithm for the special case of the disjoint set union problem in which the structure of the unions (defined by a “union tree”) is known in advance, which gives similar improvements in the efficiency of algorithms for solving a number of other problems.

Filtering search: A new approach to query-answering

- Computer Science, Mathematics24th Annual Symposium on Foundations of Computer Science (sfcs 1983)
- 1983

We introduce a new technique for solving problems of the following form: preprocess a set of objects so that those satisfying a given property with respect to a query object can be listed very…

Decomposable Searching Problems I: Static-to-Dynamic Transformation

- Computer ScienceJ. Algorithms
- 1980

The Design of Dynamic Data Structures

- MathematicsLecture Notes in Computer Science
- 1983

A catalog of (multi-dimensional) searching problems and final comments and open problems.