Fractional Taylor Series for Caputo Fractional Derivatives. Construction of Numerical Schemes

  title={Fractional Taylor Series for Caputo Fractional Derivatives. Construction of Numerical Schemes},
  author={David Dom{\'i}nguez Usero},
A fractional power series expansion is obtained for Caputo fractional derivative as a generalization of Taylor power series. The series obtained are independent from the point in which fractional derivative is defined. This is used to obtain Euler and Taylor numerical schemes to solve ordinary fractional differential equations. Finally the methods derived are applied to integrate numerically a first and a second order ordinary fractional differential equation using schemes of order α, 2α and 4… CONTINUE READING

Figures and Topics from this paper.


Publications referenced by this paper.

Propagación de Ondas No Lineales en Medios Heterogéneos

  • D. Usero
  • Ph.D. Thesis, Dpto. de Matemática Aplicada…
  • 2004
Highly Influential
4 Excerpts


  • A. A. Kilbas, H. M. Srivastava
  • J. Trujillo, “ Theory and Applications of…
  • 2006
2 Excerpts

Fractional Derivative and Hamiltonian Systems

  • G. Turchetti, D. Usero, L. Vázquez
  • Tamsui Oxford Journal of Mathematical Sciences…
  • 2002
3 Excerpts

Estimación numérica de los posibles polos de una ODE

  • D. Usero
  • Dpto. de Matemática Aplicada, Universidad…
  • 2001
3 Excerpts

Numerical Analysis

  • R. Burden, J. Faires
  • 6th. edition, Brooks-Cole Publishing, Pacific…
  • 1997
2 Excerpts

Similar Papers

Loading similar papers…