We consider unitary analogs of d−dimensional Anderson models on l2(Zd) defined by the product Uω = DωS where S is a deterministic unitary and Dω is a diagonal matrix of i.i.d. random phases. The operator S is an absolutely continuous band matrix which depends on parameters controlling the size of its off-diagonal elements. We adapt the method of Aizenman… (More)

### Presentations referencing similar topics