Fourth-order di erence equation for the associated classical discrete orthogonal polynomials

@inproceedings{Foupouagnignia1998FourthorderDE,
  title={Fourth-order di erence equation for the associated classical discrete orthogonal polynomials},
  author={M. Foupouagnignia and Werner Koepf and A. Ronveauxb},
  year={1998}
}
We derive the fourth-order di erence equation satis ed by the associated order r of classical orthogonal polynomials of a discrete variable. The coe cients of this equation are given in terms of the polynomials and which appear in the discrete Pearson equation ( ) = de ning the weight (x) of the classical discrete orthogonal polynomials. c © 1998 Elsevier Science B.V. All rights reserved. AMS classi cation: 33C25 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 12 references

Fourth - order di erential equation satis ed by the associated of any order of all classical orthogonal polynomials . A study of their distribution of zeros

  • A. Ronveaux Zarzo, A. Godoy
  • J . Comput . Appl . Math .
  • 1998

Fourth-order di erence equation for the rst associated of classical discrete orthogonal polynomials

  • A. Ronveaux, E. Godoy, A. Zarzo, I. Area
  • Letter, J. Comput. Appl. Math. 90
  • 1998
3 Excerpts

Fourth-order di erential equation satis ed by the associated orthogonal polynomials

  • S. Belmehdi, A. Ronveaux
  • Rend. Mat. Appl. (7) 11 (1991) 313–326. 108 M…
  • 1998
2 Excerpts

Hounkonnou, The fourth-order di erence equation satis ed by the associated orthogonal polynomials of -Laguerre-Hahn Class

  • M. Foupouagnigni, M.N.A. Ronveaux
  • 1997
1 Excerpt

Algorithms for classical orthogonal polynomials

  • W. Koepf, D. Schmersau
  • Konrad–Zuse–Zentrum Berlin, preprint SC 96-23
  • 1996
1 Excerpt

Di erence equation for the associated polynomials on the linear lattice

  • N. M. Atakishiyev, A. Ronveaux, K. B. Wolf
  • Zt. Teoret. Mat. Fiz. 106
  • 1996
2 Excerpts

Fourth-order di erence equation for the associated Meixner and Charlier polynomials

  • J. Letessier, A. Ronveaux, G. Valent
  • J. Comput. Appl. Math. 71
  • 1996
3 Excerpts

Results on the associated classical orthogonal polynomials

  • S. Lewanowicz
  • J. Comput. Appl. Math. 65
  • 1995
1 Excerpt

Fourth-order di erential equation satis ed by the associated of any order of all classical orthogonal polynomials

  • A. Zarzo, A. Ronveaux, A. Godoy
  • A study of their distribution of zeros, J. Comput…
  • 1993
1 Excerpt

4th order di erential equation and orthogonal polynomials of the Laguerre–Hahn class

  • A. Ronveaux
  • IMACS Ann. Comput. Appl. Math., vol. 9, Baltzer…
  • 1991
2 Excerpts

Similar Papers

Loading similar papers…