Fourier transforms of Gibbs measures for the Gauss map
@article{Jordan2013FourierTO, title={Fourier transforms of Gibbs measures for the Gauss map}, author={Thomas Jordan and Tuomas Sahlsten}, journal={Mathematische Annalen}, year={2013}, volume={364}, pages={983-1023} }
We investigate under which conditions a given invariant measure $$\mu $$μ for the dynamical system defined by the Gauss map $$x \mapsto 1/x \,\,{\mathrm {mod}}\,1$$x↦1/xmod1 is a Rajchman measure with polynomially decaying Fourier transform $$\begin{aligned} |\widehat{\mu }(\xi )| = O(|\xi |^{-\eta }), \quad \text {as} \quad |\xi | \rightarrow \infty . \end{aligned}$$|μ^(ξ)|=O(|ξ|-η),as|ξ|→∞.We show that this property holds for any Gibbs measure $$\mu $$μ of Hausdorff dimension greater than 1…
47 Citations
Decrease of Fourier coefficients of stationary measures
- MathematicsMathematische Annalen
- 2018
Let $$\mu $$μ be a Borel probability measure on $${\mathrm {SL}}_2(\mathbb {R})$$SL2(R) with a finite exponential moment, and assume that the subgroup $$\varGamma _{\mu }$$Γμ generated by the support…
On the decay of the Fourier transform of self-conformal measures
- Mathematics
- 2020
Let $\Phi$ be a $C^{1+\gamma}$ smooth IFS on an interval $J\subset \mathbb{R}$, where $\gamma>0$.
We provide mild conditions on the derivative cocycle that ensure that all non-atomic self conformal…
Fourier decay bound and differential images of self-similar measures
- Mathematics
- 2017
In this note, we investigate $C^2$ differential images of the homogeneous self-similar measure associated with an IFS $\mathcal{I}=\{\rho x+a_j\}_{j=1}^m$ satisfying the strong separation condition…
Random walks in the hyperbolic plane and the question mark function
- Mathematics
- 2017
Consider $G=SL_2(\mathbb{Z})/\{\pm I\}$ acting on the complex upper half plane $H$ by $h_M(z)=\frac{az+b}{cz+d},$ for $M \in G$. Let $D=\{z \in H: |z|\geq 1, |\Re(z)|\leq 1/2\}$. We consider the set…
Fourier dimension and spectral gaps for hyperbolic surfaces
- Mathematics
- 2017
We obtain an essential spectral gap for a convex co-compact hyperbolic surface $${M=\Gamma\backslash\mathbb H^2}$$M=Γ\H2 which depends only on the dimension $${\delta}$$δ of the limit set. More…
Fourier decay rate of coin-tossing type measures.
- Mathematics
- 2018
A coin-tossing type measure $\mu$ on $[0,1]$ is an infinite convolution satisfying
\[\mu=\Asterisk_{n=1}^{\infty}\left(\frac{1}{2}(1+\phi(n))\delta_0+\frac{1}{2}(1-\phi(n))\delta_{2^{-n}}\right),\]…
Random Walks in the Hyperbolic Plane and the Minkowski Question Mark Function
- Mathematics
- 2018
Consider $$G=SL_2(\mathbb {Z})/\{\pm I\}$$G=SL2(Z)/{±I} acting on the complex upper half plane H by $$h_M(z)=\frac{az\,+\,b}{cz\,+\,d}$$hM(z)=az+bcz+d for $$M \in G$$M∈G. Let $$D=\{z \in H: |z|\ge 1,…
Transfer of Stationary Stochastic Processes to the Unit Interval. Part I: Characterization Results
- Mathematics
- 2020
Let $q\ge2$ be an integer and let $\{X_n\}_{n\geq 1}$ be a stochastic process with state space $\{0,\ldots,q-1\}$. Let $F$ be the cumulative distribution function (CDF) of the base-$q$ expansion…
Explicit Salem sets and applications to metrical Diophantine approximation
- MathematicsTransactions of the American Mathematical Society
- 2018
Let $Q$ be an infinite subset of $\mathbb{Z}$, let $\Psi: \mathbb{Z} \rightarrow [0,\infty)$ be positive on $Q$, and let $\theta \in \mathbb{R}$. Define $$ E(Q,\Psi,\theta) = \{ x \in \mathbb{R} : \|…
References
SHOWING 1-10 OF 48 REFERENCES
Equidistribution from fractal measures
- Mathematics
- 2015
We give a fractal-geometric condition for a measure on $$[0,1]$$[0,1] to be supported on points $$x$$x that are normal in base $$n$$n, i.e. such that $$\{n^kx\}_{k\in \mathbb {N}}$${nkx}k∈N…
Entropy and large deviation
- Mathematics
- 1990
The author shows the existence of a deviation function for the maximal measure mu of a hyperbolic rational map of degree d. He relates several results of large deviation with the thermodynamic…
INVARIANT MEASURES AND EQUILIBRIUM STATES FOR SOME MAPPINGS WHICH EXPAND DISTANCES
- Mathematics
- 1978
For a certain collection of transformations T we define a Perron- Frobenius operator and prove a convergence theorem for the powers of the operator along the lines of the theorem D. Ruelle proved in…
Fractal analysis for sets of non-differentiability of Minkowski's question mark function
- Mathematics
- 2008
Continued fractions and Fourier transforms
- Mathematics
- 1980
Let F N be the set of real numbers x whose continued fraction expansion x = [ a 0 ; a 1 , a 2 ,…, a n ,…] contains only elements a i = 1,2,…, N . Here N ≥ 2. Considerable effort, [1,3], has centred…
On some singular monotonic functions which are strictly increasing
- Mathematics
- 1943
almost everywhere, may be constant in every interval contiguous to a perfect set of measure zero: it is usually said, in this case, that f(x) is of the Cantor type. There are, however, monotonic…
Lectures on Harmonic Analysis
- Mathematics
- 2003
The $L^1$ Fourier transform The Schwartz space Fourier inversion and the Plancherel theorem Some specifics, and $L^p$ for $p<2$ The uncertainty principle The stationary phase method The restriction…
On a problem by R. Salem concerning Minkowski's question mark function
- Mathematics
- 2015
Minkowski's question mark function is strictly increasing on $[0, 1]$ and hence defines a Stieltjes measure on $[0, 1]$. A problem originating from Salem in 1943, is to determine whether the Fourier…
Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability
- Mathematics
- 1995
Acknowledgements Basic notation Introduction 1. General measure theory 2. Covering and differentiation 3. Invariant measures 4. Hausdorff measures and dimension 5. Other measures and dimensions 6.…
Existence of gibbs measures for countable Markov shifts
- Mathematics
- 2003
We prove that a potential with summable variations and finite pressure on a topologically mixing countable Markov shift has a Gibbs measure iff the transition matrix satisfies the big images and…