Four identities related to third-order mock theta functions

@article{Cui2020FourIR,
title={Four identities related to third-order mock theta functions},
author={Su-Ping Cui and Nancy S. S. Gu and Chen-Yang Su},
journal={The Ramanujan Journal},
year={2020}
}

Ramanujan presented four identities for third order mock theta functions in his Lost Notebook. In 2005, with the aid of complex analysis, Yesilyurt first proved these four identities. Recently, Andrews et al. provided different proofs by using $q$-series. In this paper, in view of some identities of a universal mock theta function \begin{align*} g(x;q)=x^{-1}\left(-1+\sum_{n=0}^{\infty}\frac{q^{n^{2}}}{(x;q)_{n+1}(qx^{-1};q)_{n}}\right), \end{align*} we establish new proofs of these four… Expand

In 2005, using a famous lemma of Atkin and Swinnerton-Dyer (Some properties of partitions, Proc. Lond. Math. Soc. (3) 4 (1954), 84–106), Yesilyurt (Four identities related to third order mock theta… Expand

We obtain four Hecke-type double sums for three of Ramanujan’s third order mock theta functions. We discuss how these four are related to the new mock theta functions of Andrews’ work on q-orthogonal… Expand

By introducing a dual notion between partial theta functions and Appell–Lerch sums, we find and prove a formula which expresses Hecke‐type double sums in terms of Appell–Lerch sums. Not only does our… Expand

In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews… Expand