Forward Integrals and Stochastic Differential Equations

  title={Forward Integrals and Stochastic Differential Equations},
  author={Martina Z{\"a}hle},
Abstract. We show that an anticipating stochastic forward integral introduced in [8] by means of fractional calculus is an extension of other forward integrals known from the literature. The latter provide important classes of integrable processes. In particular, we investigate the deterministic case for integrands and integrators from optimal Besov spaces. Here the forward integral agrees with the continuous extension of the Lebesgue–Stieltjes integral to these function spaces. 


Publications referenced by this paper.
Showing 1-8 of 8 references


  • F. Russo, P. Vallois
  • backward and symmetric stochastic integration…
  • 1993
Highly Influential
4 Excerpts

Theory of function spaces

  • H. Triebel
  • Geest & Portig, Leipzig, 1983 and Birkhäuser…
  • 1983
Highly Influential
5 Excerpts

The generalized covariation process and Itô formula

  • F. Russo, P. Vallois
  • Stoch. Processes Appl. 59
  • 1995
2 Excerpts

Forward , backward and symmetric stochastic integration

  • P. Vallois
  • Probab . Th . Relat . Fields
  • 1993

Quelques espaces fonctionelles associés à des processus gaussiens

  • Z. Ciesielski, G. Kerkyacharian, R. Roynette
  • Studia Math. 107
  • 1993

Stieltjes integration and stochastic calculus with respect to self–affine functions

  • T. Bedford, T. Kamae
  • Japan J. Indust. Appl. Math. 8
  • 1991
1 Excerpt

Similar Papers

Loading similar papers…