Corpus ID: 119117589

Formulae of $\imath$-divided powers in ${\mathbf U}_q(\mathfrak{sl}_2)$

@article{Berman2017FormulaeO,
  title={Formulae of \$\imath\$-divided powers in \$\{\mathbf U\}_q(\mathfrak\{sl\}_2)\$},
  author={Collin Berman and W. Wang},
  journal={arXiv: Representation Theory},
  year={2017}
}
The existence of the $\imath$-canonical basis (also known as the $\imath$-divided powers) for the coideal subalgebra of the quantum $\mathfrak{sl}_2$ were established by Bao and Wang, with conjectural explicit formulae. In this paper we prove the conjectured formulae of these $\imath$-divided powers. This is achieved by first establishing closed formulae of the $\imath$-divided powers in basis for quantum $\mathfrak{sl}_2$ and then formulae for the $\imath$-canonical basis in terms of Lusztig's… Expand
4 Citations

References

SHOWING 1-6 OF 6 REFERENCES
Canonical bases arising from quantum symmetric pairs
  • 45
  • PDF
Positivity vs negativity of canonical bases
  • Y. Li, Weiqiang Wang
  • Mathematics
  • 2015
  • 22
  • Highly Influential
  • PDF
Introduction to Quantum Groups
  • 1,268