Formation of the giant planets

  title={Formation of the giant planets},
  author={Gennaro D’Angelo and Jack J. Lissauer},
The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium, which could not have condensed into solid planetesimals within the protoplanetary disk. All three (transiting) extrasolar giant planets with well determined masses and radii also must contain substantial amounts of these light… 


Timescales for planetary accretion and the structure of the protoplanetary disk
Formation of Giant Planets: Dependences on Core Accretion Rate and Grain Opacity
We have investigated the formation of gaseous envelopes of giant planets with wide ranges of parameters through quasi-static evolutionary simulations. In the nucleated instability model, rapid gas
Formation of the Giant Planets by Concurrent Accretion of Solids and Gas
New numerical simulations of the formation of the giant of the second phase. planets are presented, in which for the first time both the gas and The actual rates at which the giant planets accreted
Can Giant Planets Form by Direct Gravitational Instability?
Gravitational instability has been invoked as a possible mechanism of the giant planet production in protoplanetary disks. Here we critically revise its viability by noting that to form planets
Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits
To aid in the physical interpretation of planetary radii constrained through observations of transiting planets, or eventually direct detections, we compute model radii of pure hydrogen-helium,
Formation of Giant Planets
This is a descriptive and non-mathematical summary of giant planet formation theories. There are two end-member models, core accretion and disk instability. In the core accretion model, several to
Evolution of Migrating Planets Undergoing Gas Accretion
We analyze the orbital and mass evolution of planets that undergo runaway gas accretion by means of two- and three-dimensional hydrodynamic simulations. The disk torque distribution per unit disk
Nebular Gas Drag and Planetary Accretion
Abstract We have studied the orbital dynamics of planetesimals whose decay due to gas drag in the primordial solar nebula causes them to spiral sunward and approach a growing planet. The planet is
Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets
In an attempt to develop a deterministic theory for planet formation, we examine the accretion of cores of giant planets from planetesimals, gas accretion onto the cores, and their orbital migration.
Shock Compression of Deuterium and the Interiors of Jupiter and Saturn
Recently, deuterium has been the focus of a high level of experimental and theoretical activity, sparked by a disagreement on the experimental value of the maximum compression along the principal