Formal Solutions of Any-Order Mass, Angular-Momentum, andDipole Perturbations on the Schwarzschild Background Spacetime

@article{Nakamura2021FormalSO,
  title={Formal Solutions of Any-Order Mass, Angular-Momentum, andDipole Perturbations on the Schwarzschild Background Spacetime},
  author={Kouji Nakamura},
  journal={Letters in High Energy Physics},
  year={2021}
}
  • Kouji Nakamura
  • Published 31 January 2021
  • Physics
  • Letters in High Energy Physics
Formal solutions of any-order mass, angular-momentum, dipole perturbations on the Schwarzschild background spacetime are derived in a gauge-invariant manner. Once we accept the proposal in [K. Nakamura, Class. Quantum Grav. 38 (2021), 145010.], we can extend the gauge-invariant linear perturbation theory on the Schwarzschild background spacetime including the monopole (l = 0) and dipole (l = 1) modes to any-order perturbations of the same background spacetime through the arguments in [K… 
3 Citations
Gauge-invariant perturbation theory on the Schwarzschild background spacetime Part I : -- Formulation and odd-mode perturbations
This is the Part I paper of our series of papers on a gauge-invariant linear perturbation theory on the Schwarzschild background spacetime. We first review our general framework of the gauge-invariant
Gauge-invariant perturbation theory on the Schwarzschild background spacetime Part II: -- Even-mode perturbations
This is the Part II paper of our series of papers on a gauge-invariant perturbation theory on the Schwarzschild background spacetime. After reviewing our general framework of the gauge-invariant
Gauge-invariant perturbation theory on the Schwarzschild background spacetime Part III: -- Realization of exact solutions
This is the Part III paper of our series of papers on a gauge-invariant perturbation theory on the Schwarzschild background spacetime. After reviewing our general framework of the gauge-invariant

References

SHOWING 1-10 OF 12 REFERENCES
Commun
  • Math. Phys. 193
  • 1998
Class
Prog
  • Theor. Phys. 113
  • 2005
Prog
  • Theor. Phys. 110,
  • 2003
Phys
  • Rev. Lett. 24 (1970), 737; F. Zerilli, Phys. Rev. D 2 (1970), 2141; H. Nakano, Private note on “Regge-Wheeler- Zerilli formalism”
  • 2019
124004; K. Nakamura
  • Prog. Theor. Exp. Phys
  • 2012
Phys
  • Rev. D 74 (2006), 101301(R); K. Nakamura, Prog. Theor. Phys. 117 (2007), 17; K. Nakamura, Bulgarian Journal of Physics 35 (2008), 489; K. Nakamura, Prog. Theor. Phys. 121 (2009), 1321; A. J. Christopherson, K. A. Malik, D. R. -Matravers, K. Nakamura, Class. Quantum Grav. 28 (2011), 225024; K. Nakamu
  • 2009
Phys
  • Rev. D 19 (1979), 2268; U.H. Gerlach and U.K. Sengupta, Phys. Rev. D 20 (1979), 3009; U.H. Gerlach and U.K. Sengupta, J. Math. Phys. 20 (1979), 2540; U.H. Gerlach and U.K. Sengupta, Phys. Rev. D 22
  • 1980
323; V. Moncrief
  • Ann. Phys. (N.Y.)
  • 1974
Gravitational Radiation
IN recent years there has been a good deal of controversy about gravitational radiation. Historically, the position is as follows. It was shown quite soon after the publication of the general theory
...
1
2
...