Forced linear oscillations of microbubbles in blood capillaries.

Abstract

A theoretical investigation of the forced linear oscillations of a gas microbubble in a blood capillary, whose radius is comparable in size to the bubble radius is presented. The natural frequency of oscillation, the thermal and viscous damping coefficients, the amplitude resonance, the energy resonance, as well as the average energy absorbed by the system, bubble plus vessel, have been computed for different kinds of gas microbubbles, containing air, octafluropropane, and perflurobutane as a function of the bubble radius and applied frequency. It has been found that the bubble behavior is isothermal at low frequencies and for small bubbles and between isothermal and adiabatic for larger bubbles and higher frequencies, with the viscous damping dominating over the thermal damping. Furthermore, the width of the energy resonance is strongly dependent on the bubble size and the natural frequency of oscillation is affected by the presence of the vessel wall and position of the bubble in the vessel. Therefore, the presence of the blood vessel affects the way in which the bubble absorbs energy from the ultrasonic field. The motivation of this study lies in the possibility of using gas microbubbles as an aid to therapeutic focused ultrasound treatments.

Cite this paper

@article{Sassaroli2004ForcedLO, title={Forced linear oscillations of microbubbles in blood capillaries.}, author={Elisabetta Sassaroli and K. Hynynen}, journal={The Journal of the Acoustical Society of America}, year={2004}, volume={115 6}, pages={3235-43} }