# Foliated Lie and Courant Algebroids

@article{Vaisman2009FoliatedLA, title={Foliated Lie and Courant Algebroids}, author={Izu Vaisman}, journal={Mediterranean Journal of Mathematics}, year={2009}, volume={7}, pages={415-444} }

If A is a Lie algebroid over a foliated manifold $${(M, {\mathcal {F}})}$$, a foliation of A is a Lie subalgebroid B with anchor image $${T{\mathcal {F}}}$$ and such that A/B is locally equivalent with Lie algebroids over the slice manifolds of $${\mathcal F}$$. We give several examples and, for foliated Lie algebroids, we discuss the following subjects: the dual Poisson structure and Vaintrob's supervector field, cohomology and deformations of the foliation, integration to a Lie groupoid. In…

## 11 Citations

LA-Courant Algebroids and their Applications

- Mathematics
- 2012

In this thesis we develop the notion of LA-Courant algebroids, the infinitesimal analogue of multiplicative Courant algebroids. Specific applications include the integration of q- Poisson (d,…

Almost Kähler Ricci Flows and Einstein and Lagrange–Finsler Structures on Lie Algebroids

- Mathematics
- 2015

In this work we investigate Ricci flows of almost Kähler structures on Lie algebroids when the fundamental geometric objects are completely determined by (semi) Riemannian metrics, or (effective)…

FOLIATED GROUPOIDS AND THEIR INFINITESIMAL DATA

- Mathematics
- 2011

M. JOTZ AND C. ORTIZAbstract. In this work, we study Lie groupoids equipped with multiplicative foliationsand the corresponding inﬁnitesimal data. We determine the inﬁnitesimal counterpartof a…

A construction of Courant algebroids on foliated manifolds

- Mathematics
- 2010

For any transversal-Courant algebroid E on a foliated manifold (M,F), and for any choice of a decomposition T M = TF © Q, we construct a

Poisson structures on almost complex Lie algebroids

- Mathematics
- 2014

In this paper, we extend the almost complex Poisson structures from almost complex manifolds to almost complex Lie algebroids. Examples of such structures are also given and the almost complex…

On the geometry of double field theory

- Mathematics
- 2012

Double field theory was developed by theoretical physicists as a way to encompass T-duality. In this paper, we express the basic notions of the theory in differential-geometric invariant terms in the…

On Almost Complex Lie Algebroids

- Mathematics
- 2013

The almost complex Lie algebroids over smooth manifolds are considered in the paper. In the first part, we give some examples and we extend some basic results from almost complex manifolds to almost…

## References

SHOWING 1-10 OF 38 REFERENCES

Manin Triples for Lie Bialgebroids

- Mathematics
- 1995

In his study of Dirac structures, a notion which includes both Poisson structures and closed 2-forms, T. Courant introduced a bracket on the direct sum of vector fields and 1-forms. This bracket does…

Transitive Courant algebroids

- MathematicsInt. J. Math. Math. Sci.
- 2005

A class of transitive Courant algebroids which are Whitney sums of a Courant subalgebroid with neutral metric and Courant-like bracket and a pseudo-Euclidean vector bundle with a flat, metric connection is described.

Lie bialgebroids and Poisson groupoids

- Mathematics
- 1994

Lie bialgebras arise as infinitesimal invariants of Poisson Lie groups. A Lie bialgebra is a Lie algebra g with a Lie algebra structure on the dual g∗ which is compatible with the Lie algebra g in a…

Holomorphic Poisson Manifolds and Holomorphic Lie Algebroids

- Mathematics
- 2010

We study holomorphic Poisson manifolds and holomorphic Lie algebroids from the viewpoint of real Poisson geometry. We give a characterization of holomorphic Poisson structures in terms of the Poisson…

Integration of holomorphic Lie algebroids

- Mathematics
- 2008

We prove that a holomorphic Lie algebroid is integrable if and only if its underlying real Lie algebroid is integrable. Thus the integrability criteria of Crainic–Fernandes (Theorem 4.1 in Crainic,…

Lie Algebroids, Holonomy and Characteristic Classes

- Mathematics
- 2000

Abstract We extend the notion of connection in order to study singular geometric structures, namely, we consider a notion of connection on a Lie algebroid which is a natural extension of the usual…

Reduction of branes in generalized complex geometry

- Mathematics
- 2007

We show that certain submanifolds of generalized complex manifolds (“weak branes”) admit a natural quotient which inherits a generalized complex structure. This is analog to quotienting coisotropic…

ISOTROPIC SUBBUNDLES OF TM ⊕ T*M

- Mathematics
- 2007

We define integrable, big-isotropic structures on a manifold M as subbundles E ⊆ TM ⊕ T*M that are isotropic with respect to the natural, neutral metric (pairing) g of TM ⊕ T*M and are closed by…