Fluorescence lifetimes of protochlorophyllide in plants with different proportions of short-wavelength and long-wavelength protochlorophyllide spectral forms.

Abstract

Dark-grown leaves of maize (Zea mays), wheat (Triticum aestivum), wild-type pea (Pisum sativum) and its light-independent photomorphogenesis mutant (lip1) have different proportions of protochlorophyllide (Pchlide) forms as revealed by low-temperature fluorescence emission spectra. Four discrete spectral forms of Pchlide, with emission peaks around 633, 640, 656 and 670 nm, could be distinguished after Gaussian deconvolution. In maize and wheat the 656 nm component was the most prominent, whereas for wild-type pea and its lip1 mutant, the 633 and 640 nm components contributed mostly to the fluorescence emission spectra. For the fluorescence lifetimes measured at 77 K a double exponential model was the most adequate to describe the Pchlide fluorescence decay not only for the Pchlide(650-656) form but also for the short-wavelength Pchlide forms. A fast component in the range 0.3-0.8 ns and a slow component in the range 5.1-7.1 ns were present in all samples, but the values varied, depending on species. The long-wavelength Pchlide(650-656) form had a slow component with a lifetime between 5.1 and 6.7 ns, probably reflecting the fluorescence from aggregated Pchlide. The short-wavelength Pchlide(628-633) form had values of the slow component varying between 6.2 and 7.1 ns. This represents a monomeric but probably protein-bound Pchlide form because the free Pchlide in solution has a much longer lifetime around 10 ns at 77 K. The contribution of different Pchlide forms to the measured lifetime values is discussed.

Statistics

0102030'04'05'06'07'08'09'10'11'12'13'14'15'16'17
Citations per Year

54 Citations

Semantic Scholar estimates that this publication has 54 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{MyliwaKurdziel2003FluorescenceLO, title={Fluorescence lifetimes of protochlorophyllide in plants with different proportions of short-wavelength and long-wavelength protochlorophyllide spectral forms.}, author={Beata Myśliwa-Kurdziel and Mohammad Reza Amirjani and Kazimierz Strzałka and Christer Sundqvist}, journal={Photochemistry and photobiology}, year={2003}, volume={78 2}, pages={205-12} }