Flood flow forecasting using ANN, ANFIS and regression models

Abstract

Flood prediction is an important for the design, planning and management of water resources systems. This study presents the use of artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), multiple linear regression (MLR) and multiple nonlinear regression (MNLR) for forecasting maximum daily flow at the outlet of the Khosrow Shirin… (More)
DOI: 10.1007/s00521-013-1443-6

Topics

13 Figures and Tables

Statistics

051015201520162017
Citations per Year

Citation Velocity: 7

Averaging 7 citations per year over the last 3 years.

Learn more about how we calculate this metric in our FAQ.

Cite this paper

@article{Rezaeianzadeh2013FloodFF, title={Flood flow forecasting using ANN, ANFIS and regression models}, author={M. Rezaeianzadeh and Hossein Tabari and A. Arabi Yazdi and S. Isik and L. Kalin}, journal={Neural Computing and Applications}, year={2013}, volume={25}, pages={25-37} }