Flat systems , equivalence and trajectory generation

  title={Flat systems , equivalence and trajectory generation},
  author={Ph. Martin and Richard M. Murray and Pierre Rouchon},
Flat systems, an important subclass of nonlinear control systems introduced via differential-algebraic methods, are defined in a differential geometric framework. We utilize the infinite dimensional geometry developed by Vinogradov and coworkers: a control system is a diffiety, or more precisely, an ordinary diffiety, i.e. a smooth infinite-dimensional manifold equipped with a privileged vector field. After recalling the definition of a Lie-Bäcklund mapping, we say that two systems are… CONTINUE READING
Highly Cited
This paper has 84 citations. REVIEW CITATIONS


Publications citing this paper.
Showing 1-10 of 56 extracted citations

85 Citations

Citations per Year
Semantic Scholar estimates that this publication has 85 citations based on the available data.

See our FAQ for additional information.


Publications referenced by this paper.
Showing 1-10 of 109 references

Controlling nonlinear systems by flatness

  • M. Fliess, J. levine, P. Martin, F. Ollivier, P. Rouchon
  • Progress in Systems and Control Theory…
  • 1997
Highly Influential
4 Excerpts

Flat systems

  • Ph Martin, R. Murray, P. Rouchon
  • In Proc. of the 4th European Control Conf.,
  • 1997
Highly Influential
4 Excerpts

Systèmes linéaires sur les opérateurs de Mikusiński et commande d’une poutre flexible

  • M. Fliess, H. Mounier, P. Rouchon, J. Rudolph
  • ESAIM Proc. “Élasticité, viscolélasticité et…
  • 1996
Highly Influential
4 Excerpts

Commande de procédés chimiques: réacteurs et colonnes de distillation, chapter Réacteurs chimiques différentiellement plats: planification et suivi de trajectoires, pages 163–200

  • P. Rouchon, J. Rudolph
  • Traité IC2. J.P. Corriou, Paris, hermès edition,
  • 2001
1 Excerpt

Similar Papers

Loading similar papers…