Fixed points of the smoothing transform: two-sided solutions

@article{Alsmeyer2010FixedPO,
title={Fixed points of the smoothing transform: two-sided solutions},
author={Gerold Alsmeyer and Matthias Meiners},
journal={Probability Theory and Related Fields},
year={2010},
volume={155},
pages={165-199}
}
• Published 13 September 2010
• Mathematics
• Probability Theory and Related Fields
Given a sequence (C, T) = (C, T1, T2, . . .) of real-valued random variables with Tj ≥ 0 for all j ≥ 1 and almost surely finite N = sup{j ≥ 1 : Tj > 0}, the smoothing transform associated with (C, T), defined on the set $${\mathcal{P}(\mathbb R)}$$ of probability distributions on the real line, maps an element $${P \in \mathcal{P}(\mathbb R)}$$ to the law of $${C + \sum_{j \geq 1} T_j X_j}$$ , where X1, X2, . . . is a sequence of i.i.d. random variables independent of (C, T) and with…
59 Citations
The Smoothing Transform: A Review of Contraction Results
Given a sequence (C, T) = (C, T 1, T 2, …) of real-valued random variables, the associated so-called smoothing transform $$\mathcal{S}$$ maps a distribution F from a subset Γ of distributions on
Fixed points of multivariate smoothing transforms with scalar weights
• Mathematics
• 2015
Given a sequence $(C_1,\ldots,C_d,T_1,T_2,\ldots)$ of real-valued random variables with $N := \#\{j \geq 1: T_j \not = 0\} < \infty$ almost surely, there is an associated smoothing transformation
Solutions to complex smoothing equations
• Mathematics
• 2015
We consider smoothing equations of the form \begin{aligned} X ~\mathop {=}\limits ^{\text {law}}~ \sum _{j \ge 1} T_j X_j + C \end{aligned}X=law∑j≥1TjXj+Cwhere $$(C,T_1,T_2,\ldots )$$(C,T1,T2,…)
Precise Tail Asymptotics for Attracting Fixed Points of Multivariate Smoothing Transformations
• Mathematics
• 2015
Given $d \ge 1$, let $(A_i)_{i\ge 1}$ be a sequence of random $d\times d$ real matrices and $Q$ be a random vector in $\mathbb{R}^d$. We consider fixed points of multivariate smoothing transforms,
Precise tail asymptotics of fixed points of the smoothing transform with general weights
• Mathematics
• 2015
We consider solutions of the stochastic equation $R=_d\sum_{i=1}^NA_iR_i+B$, where $N>1$ is a fixed constant, $A_i$ are independent, identically distributed random variables and $R_i$ are independent
The fixed points of the multivariate smoothing transform
Let $$(\mathbf {T}_1, \mathbf {T}_2, \ldots )$$(T1,T2,…) be a sequence of random $$d\times d$$d×d matrices with nonnegative entries, and let Q be a random vector with nonnegative entries. Consider
Precise tail index of fixed points of the two-sided smoothing transform
• Mathematics
• 2013
We consider real-valued random variables R satisfying the distributional equation $$\displaystyle{ R\stackrel{d}{=}\sum _{k=1}^{N}T_{ k}R_{k} + Q, }$$ where $$R_{1},R_{2},\ldots$$ are iid
Convergence of the population dynamics algorithm in the Wasserstein metric
We study the convergence of the population dynamics algorithm, which produces sample pools of random variables having a distribution that closely approximates that of the {\em special endogenous
On the derivative martingale in a branching random walk
• Mathematics
• 2020
We work under the A\"{\i}d\'{e}kon-Chen conditions which ensure that the derivative martingale in a supercritical branching random walk on the line converges almost surely to a nondegenerate
Tail behavior of solutions of linear recursions on trees
Consider the linear nonhomogeneous fixed-point equation R=D∑i=1NCiRi+Q, where (Q,N,C1,C2,…) is a random vector with N∈{0,1,2,3,…}∪{∞},Ci≥0 for all i∈N, P(|Q|>0)>0, and {Ri}i∈N is a sequence of i.i.d.