Finiteness of spatial central configurations in the five-body problem

@inproceedings{Hampton2011FinitenessOS,
  title={Finiteness of spatial central configurations in the five-body problem},
  author={Marshall Hampton and Anders Jensen},
  year={2011}
}
We strengthen a generic finiteness result due to Moeckel by showing that the number of spatial central configurations of the Newtonian five-body problem with positive masses is finite, apart from some explicitly given special cases of mass values. 

References

Publications referenced by this paper.
Showing 1-10 of 18 references

Anullstellensatz and a positivstellensatz in semialgebraic geometry

  • G. Stengle
  • Math . Ann .
  • 2010

Khovanskii, A.G.: Newton polyhedra and toric varieties

  • T. L. Lee, M. Santoprete
  • gfan.html
  • 2009
1 Excerpt

Newton polyhedra and toric varieties

  • A. N. Jensen, A. G. Khovanskii
  • Algorithmic Aspects of Gröbner Fans and Tropical…
  • 2007

On central configurations. Math. Zeit

  • Dyn. Astron
  • Trans. Am. Math. Soc. 353,
  • 2001

The straight line solutions of the problem of n bodies

  • F. R. Moulton
  • Trans . Am . Math . Soc .
  • 2001

A continuum of relative equilibria in the five-body problem

  • G. Roberts
  • Phys. D 127,
  • 1999
1 Excerpt

Similar Papers

Loading similar papers…