The isometry group of a compact n-dimensional hyperbolic man-ifold is known to be finite. We show that for every n ≥ 2, every finite group is realized as the full isometry group of some compact hyperbolic n-manifold. The cases n = 2 and n = 3 have been proven by Greenberg [G] and Ko-jima [K], respectively. Our proof is non constructive: it uses counting results from subgroup growth theory to show that such manifolds exist.