Finite Frames for Sparse Signal Processing


Over the last decade, considerable progress has been made towards developing new signal processing methods to manage the deluge of data caused by advances in sensing, imaging, storage, and computing technologies. Most of these methods are based on a simple but fundamental observation. That is, highdimensional data sets are typically highly redundant and live on low-dimensional manifolds or subspaces. This means that the collected data can often be represented in a sparse or parsimonious way in a suitably selected finite frame. This observation has also led to the development of a new sensing paradigm, called compressed sensing, which shows that high-dimensional data sets can often be reconstructed, with high fidelity, from only a small number of measurements. Finite frames play a central role in the design and analysis of both sparse representations and compressed sensing methods. In this chapter, we highlight this role primarily in the context of compressed sensing for estimation, recovery, support detection, regression, and detection of sparse signals. The recurring theme is that frames with small spectral norm and/or small worst-case coherence, average coherence, or sum coherence are well-suited for making measurements of sparse signals.

Extracted Key Phrases

Cite this paper

@inproceedings{Bajwa2011FiniteFF, title={Finite Frames for Sparse Signal Processing}, author={Waheed Uz Zaman Bajwa and Ali Pezeshki}, year={2011} }