Finding Tailored Partitions


We consider the following problem: given a planar set of points <italic>S</italic>, a measure <italic>&#956;</italic> acting on <italic>S</italic>, and a pair of values <italic>&#956;</italic>1 and <italic>&#956;</italic>2, does there exist a bipartition <italic>S</italic> = <italic>S</italic><subscrpt>1</subscrpt> U <italic>S</italic><subscrpt>2</subscrpt> satisfying <italic>&#956;</italic>(<italic>S<subscrpt>i</subscrpt></italic>) &#8804; <italic>&#956;<subscrpt>i</subscrpt></italic> for <italic>i</italic> = 1,2? We present algorithms of complexity <italic>&Ogr;</italic>(<italic>n</italic> log <italic>n</italic>) for several natural measures, including the diameter (<italic>set measure</italic>), the area, perimeter or diagonal of the smallest enclosing axes-parallel rectangle (<italic>rectangular measure</italic>), and the side length of the smallest enclosing axes-parallel square (<italic>square measure</italic>). The problem of partitioning <italic>S</italic> into <italic>k</italic> subsets, where <italic>k</italic> &#8805; 3, is known to be <italic>NP</italic>-complete for many of these measures.

DOI: 10.1145/73833.73862

Extracted Key Phrases

7 Figures and Tables


Citations per Year

87 Citations

Semantic Scholar estimates that this publication has 87 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Hershberger1989FindingTP, title={Finding Tailored Partitions}, author={John Hershberger and Subhash Suri}, journal={J. Algorithms}, year={1989}, volume={12}, pages={431-463} }