Corpus ID: 119140578

Fibred Categories \`a la Jean B\'enabou

@article{Streicher2018FibredC,
  title={Fibred Categories \`a la Jean B\'enabou},
  author={Thomas Streicher},
  journal={arXiv: Category Theory},
  year={2018}
}
  • Thomas Streicher
  • Published 2018
  • Mathematics
  • arXiv: Category Theory
  • These are notes about the theory of Fibred Categories as I have learned it from Jean B\'enabou. I also have used results from the Thesis of Jean-Luc Moens's from 1982 in those sections when I discuss the fibered view of geometric morphisms. Thus, almost all of the contents is not due to me but most of it cannot be found in the literature since B\'enabou has given many talks on it but most of his work on fibered categories is unpublished. But I am solely responsible for the mistakes and for… CONTINUE READING

    References

    Publications referenced by this paper.
    SHOWING 1-8 OF 8 REFERENCES

    Borceux Handbook of Categorical Algebra in 3 volumes

    • F. Bor
    • 1994

    Bénabou Des Catégories Fibrées Lecture Notes by J.-R. Roisin of a Course by J. Bénabou at Univ

    • J Ben
    • Bénabou Des Catégories Fibrées Lecture Notes by J.-R. Roisin of a Course by J. Bénabou at Univ
    • 1980

    Bénabou Logique Catégorique Lecture Notes of a Course by

    • J Ben
    • Bénabou Logique Catégorique Lecture Notes of a Course by
    • 1974

    Geometric Morphisms and Indexed Toposes In Categorical topology and its relation to analysis, algebra and combinatorics (Prague

    • M. Jibladze
    • World Scientific Publ
    • 1988

    Johnstone Sketches of an Elephant. A Compendium of Topos Theory. 2. vols

    • P T Jo
    • Johnstone Sketches of an Elephant. A Compendium of Topos Theory. 2. vols
    • 2002

    Moens Caractérisation des topos de faisceaux sur un site internè a un topos Thése, Univ. Louvain-la-Neuve

    • J.-L Moe
    • Moens Caractérisation des topos de faisceaux sur un site internè a un topos Thése, Univ. Louvain-la-Neuve
    • 1982