Feynman's path integral

@article{Dewitt1972FeynmansPI,
  title={Feynman's path integral},
  author={C{\'e}cile Morette Dewitt},
  journal={Communications in Mathematical Physics},
  year={1972},
  volume={28},
  pages={47-67}
}
  • C. Dewitt
  • Published 1972
  • Physics, Mathematics
  • Communications in Mathematical Physics
AbstractFeynman's integral is defined with respect to a pseudomeasure on the space of paths: for instance, letC be the space of pathsq:T⊂ℝ → configuration space of the system, letC be the topological dual ofC; then Feynman's integral for a particle of massm in a potentialV can be written where $$S_{\operatorname{int} } (q) = \mathop \smallint \limits_T V(q(t)) dt$$ and wheredw is a pseudomeasure whose Fourier transform is defined by for μ∈C′. Pseudomeasures are discussed; several integrals… Expand
Exact propagator for motion confined to a sector
In certain situations the Feynman path integral 'collapses' into a countable sum over classical paths. This effect is sought in motion confined to a sector (in polar coordinates: r>or=0, 0<or= phiExpand
A note on the limiting procedures for path integrals
Limiting procedures for the Feynman type path integral are considered. The evolution operator is approximated with operators corresponding to the exponential of the Hamiltonian's symbol. The proof ofExpand
Polygonal-path approximations on the path spaces of quantum-mechanical systems
Properties of the subset of polygonal paths in the Hilbert space of paths referring to ad-dimensional quantum-mechanical system are examined. The results are used to discuss various types ofExpand
Functional integral representations of partition function without limiting procedure. Techniques of calculation of moments
A definition of the Feynman path integral which does not rest on a limiting procedure based on time-slicing has been given by DeWitt-Morette. We present in this paper a discussion of real GaussianExpand
AN INTRODUCTION INTO THE FEYNMAN PATH INTEGRAL
In this lecture a short introduction is given into the theory of the Feynman path integral in quantum mechanics. The general formulation in Riemann spaces will be given based on the Weyl- orderingExpand
Continual measurements in the spacetime formation of nonrelativistic quantum mechanics
Abstract We study the nature and effects of some continual measurements in nonrelativistic quantum mechanics, a concept introduced by R. P. Feynman in his path integral formulation of quantumExpand
How to solve path integrals in quantum mechanics
A systematic classification of Feynman path integrals in quantum mechanics is presented and a table of solvable path integrals is given which reflects the progress made during the last 15 years,Expand
The difficulties in the mathematical definition of path integrals are overcome in the theory of continuous quantum measurements
Any real physical process takes place in an external (with respect to the investigated system) medium whose state reflects in one form or another information about the behavior of the system.Expand
GENERALIZED FUNCTIONS AND GAUSSIAN PATH INTEGRALS OVER NON-ARCHIMEDEAN FUNCTION SPACES
A mathematical apparatus is developed for non-Archimedean physics: a theory of generalized functions, a theory of integration, and a harmonic analysis. Both finite-dimensional andExpand
Path integral representation for the solution of a stochastic Schrodinger equation driven by a semimartingale
Abstract In this paper we prove a path integral representation in configuration space for the solution of a stochastic Schrödinger equation driven by a continuous semimartingale. We follow theExpand
...
1
2
3
4
5
...

References

SHOWING 1-8 OF 8 REFERENCES
Integration in Functional Spaces and its Applications in Quantum Physics
This translation of the survey article by I. M. Gel'fand and A. M. Yaglom on the theory and applications of integration in functional spaces in problems of quantum physics was prepared because it wasExpand
Feynman Integrals and the Schrödinger Equation
Feynman integrals, in the context of the Schrodinger equation with a scalar potential, are defined by means of an analytic continuation in the mass parameter from the corresponding Wiener integrals.Expand
Théorie des distributions
II. Differentiation II.2. Examples of differentiation. The case of one variable (n = 1). II.2.3. Pseudofunctions. Hadamard finite part. We calculate the derivative of a function f(x) which is equalExpand
Feynman Diagrams for the Yang-Mills Field
Abstract Feynman and De Witt showed, that the rules must be changed for the calculation of contributions from diagrams with closed loops in the theory of gauge invariant fields. They suggested also aExpand
Fourier Analysis on Groups
In the late 1950s, many of the more refined aspects of Fourier analysis were transferred from their original settings (the unit circle, the integers, the real line) to arbitrary locally compactExpand
Feynman Functional Integrals for Systems of Indistinguishable Particles
Feynman path integration for multiply connected space systems of indistinguishable particles, considering bosons and fermions propagators