Fast imaging of partially conductive linear cracks using impedance data
@article{Bryan2006FastIO, title={Fast imaging of partially conductive linear cracks using impedance data}, author={Kurt Bryan and Janine Haugh and David McCune}, journal={Inverse Problems}, year={2006}, volume={22}, pages={1337-1358} }
We develop two closely-related fast and simple numerical algorithms to address the inverse problem of identifying a collection of disjoint linear cracks in a two-dimensional homogeneous electrical conductor from exterior boundary voltage/current measurements. We allow the possibility that the cracks are partially conductive. Our approach also allows us to determine the actual number of cracks present, as well as make use of one or multiple input fluxes. We illustrate our algorithms with a…
2 Citations
Non-Destructive Recovery of Voids within a Three Dimensional Domain Using Thermal Imaging
- Physics
- 2006
We develop an algorithm capable of detecting the presence of spherical voids in a thermally conducting object. In addition, the process recovers both the radii and locations of each void. Our method…
Some novel approaches in modelling and image reconstruction for multi-frequency Electrical Impedance Tomography of the human brain
- Medicine
- 2006
Novel generic tools were developed in order to enable modelling and non-linear image reconstruction of large-scale problems, such as those arising from the head EIT problem.
References
SHOWING 1-10 OF 21 REFERENCES
A computational algorithm to determine cracks from electrostatic boundary measurements
- Mathematics
- 1991
RECONSTRUCTION OF MULTIPLE CRACKS FROM EXPERIMENTAL ELECTROSTATIC BOUNDARY MEASUREMENTS
- Physics
- 1993
This paper describes an algorithm for recovering a collection of linear cracks in a homogeneous electrical conductor from boundary measurements of voltages induced by specified current fluxes. The…
Unique Determination of Multiple Cracks by Two Measurements
- Mathematics
- 1996
We study the inverse problem of determining multiple cracks in a planar conductor by electrostatic measurements at the boundary. We prove that two measurements at the boundary suffice to identify…
Crack determination from boundary measurements—Reconstruction using experimental data
- Mathematics
- 1993
In this work we assess the effectiveness of Electrical Impedance Tomography for determining the presence and the location of an interior crack from boundary measurements. Electrical Impedance…
Identification of 2D cracks by elastic boundary measurements
- Mathematics
- 1999
The purpose of this work is to identify two-dimensional (2D) cracks by means of elastic boundary measurements. A uniqueness result is first proved in the general case, as well as the local…
Unique determination of a collection of a finite number of cracks from two boundary measurements
- Mathematics
- 1996
We consider the problem of identification of a collection of a finite number of cracks in a planar domain. It is proved that the location and shape of any finite number of cracks can be determined…
Recovery of cracks using a point-source reciprocity gap function
- Mathematics
- 2004
In this work we consider the recovery of internal cracks from boundary measurements. We will use a function that we call point-source reciprocity gap function, which may be obtained as a particular…
A semi-explicit algorithm for the reconstruction of 3D planar cracks
- Mathematics
- 1997
This paper deals with a semi-explicit algorithm to reconstruct two-dimensional (2D) segment cracks, or three-dimensional (3D) planar cracks, in the framework of overspecified boundary data. The…
Identification of simple poles via boundary measurements and an application of EIT
- Mathematics
- 2004
We consider the problem of identifying simple poles of a meromorphic function by means of the value of the function measured on a circle enclosing those poles. We propose an algorithm for this…