Fast computation of the Maslov index for hyperbolic linear systems with periodic coefficients
@article{Chardard2006FastCO, title={Fast computation of the Maslov index for hyperbolic linear systems with periodic coefficients}, author={Fr{\'e}d{\'e}ric Chardard and Fr{\'e}d{\'e}ric Dias and Thomas J. Bridges}, journal={Journal of Physics A}, year={2006}, volume={39}, pages={14545-14557} }
The Maslov index is a topological property of periodic orbits of finite-dimensional Hamiltonian systems that is widely used in semiclassical quantization, quantum chaology, stability of waves and classical mechanics. The Maslov index is determined from the analysis of a linear Hamiltonian system with periodic coefficients. In this paper, a numerical scheme is devised to compute the Maslov index for hyperbolic linear systems when the phase space has a low dimension. The idea is to compute on the…
24 Citations
Computing the Maslov index of solitary waves, Part 1: Hamiltonian systems on a four-dimensional phase space
- Mathematics, Physics
- 2009
Computational aspects of the Maslov index of solitary waves
- Mathematics, Physics
- 2009
When solitary waves are characterized as homoclinic orbits of a finite-dimensional Hamiltonian system, they have an integer-valued topological invariant, the Maslov index. We are interested in…
Computing the Maslov index of solitary waves. Part 2: Phase space with dimension greater than four
- Mathematics
- 2011
The Morse and Maslov indices for Schrödinger operators
- MathematicsJournal d'Analyse Mathématique
- 2018
We study the spectrum of Schrödinger operators with matrixvalued potentials, utilizing tools from infinite-dimensional symplectic geometry. Using the spaces of abstract boundary values, we derive…
Computer Assisted Verification of the Eigenvalue Problem for One-Dimensional Schrödinger Operator
- Mathematics
- 2016
We propose a rigorous computational method for verifying the isolated eigenvalues of one-dimensional Schrodinger operator containing a periodic potential and a perturbation which decays exponentially…
Counting spectrum via the Maslov index for one dimensional -periodic Schrödinger operators
- Mathematics
- 2015
We study the spectrum of the Schrodinger operators with $n\times n$ matrix valued potentials on a finite interval subject to $\theta-$periodic boundary conditions. For two such operators,…
First-order asymptotic perturbation theory for extensions of symmetric operators
- Mathematics
- 2020
This work offers a new prospective on asymptotic perturbation theory for varying self-adjoint extensions of symmetric operators. Employing symplectic formulation of self-adjointness we obtain a new…
THE MASLOV AND MORSE INDICES FOR SYSTEM SCHRÖDINGER OPERATORS ON R
- Mathematics
- 2017
Assuming a symmetric matrix-valued potential that approaches constant endstates with a sufficient asymptotic rate, we relate the Maslov and Morse indices for Schrödinger operators on R. In…
THE MASLOV AND MORSE INDICES FOR SYSTEM SCHRÖDINGER OPERATORS ON R
- Mathematics
- 2017
Assuming a symmetric matrix-valued potential that approaches constant endstates with a sufficient asymptotic rate, we relate the Maslov and Morse indices for Schrödinger operators on R. In…
References
SHOWING 1-10 OF 23 REFERENCES
Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework
- Mathematics, Physics
- 2002
On the canonically invariant calculation of Maslov indices
- Physics, Mathematics
- 2003
After a short review of various ways to calculate the Maslov index appearing in semiclassical Gutzwiller type trace formulae, we discuss a coordinate-independent and canonically invariant formulation…
Orthosymplectic integration of linear Hamiltonian systems
- Mathematics
- 1997
Summary. The authors describe a continuous, orthogonal and symplectic factorization procedure for integrating unstable linear Hamiltonian systems. The method relies on the development of an…
Geometrical properties of Maslov indices in the semiclassical trace formula for the density of states.
- Mathematics, PhysicsPhysical review. A, Atomic, molecular, and optical physics
- 1990
It is shown that in the trace formula of Gutzwiller, applied to systems of two degrees of freedom, the Maslov index arising in the contribution from each periodic orbit is equal to twice the number of times the stable and unstable manifolds wind around the periodic orbit.
Winding number formula for Maslov indices.
- Mathematics, PhysicsChaos
- 1992
A formula for the Maslov index of closed curves on Lagrangian manifolds is derived. The index is expressed as the number of times the plane tangent to the curve winds around it. Applications include…
Chaos in classical and quantum mechanics
- Physics
- 1990
Contents: Introduction.- The Mechanics of Lagrange.- The Mechanics of Hamilton and Jacobi.- Integrable Systems.- The Three-Body Problem: Moon-Earth-Sun.- Three Methods of Section.- Periodic Orbits.-…
Maslov indices in the Gutzwiller trace formula
- Mathematics
- 1991
The Gutzwiller trace formula is a semi-classical approximation for the density of states of a bound quantum system, expressed in terms of a sum over periodic orbits of the corresponding classical…
Spectral stability and time evolution of N-solitons in the KdV hierarchy
- Mathematics
- 2005
This paper concerns spectral stability and time evolution of N-solitons in the Korteweg–de Vries (KdV) hierarchy with mixed commuting time flows. Spectral stability problem is analysed by using a…