## 123 Citations

### Distributed Randomized Algorithms for PageRank Based on a Novel Interpretation

- Mathematics, Computer Science2018 Annual American Control Conference (ACC)
- 2018

Gossip-type randomization is employed in the update schemes, and it is shown that the page selection need not be limited to the uniform distribution.

### PageRank Computation via Web Aggregation in Distributed Randomized Algorithms

- Computer Science, Mathematics2019 IEEE 58th Conference on Decision and Control (CDC)
- 2019

This paper presents extensions of the distributed algorithms which were recently proposed for the computation of PageRank that are modified for aggregation-based computation by grouping pages in the same domain.

### Deterministic Coresets for Stochastic Matrices with Applications to Scalable Sparse PageRank

- Computer ScienceTAMC
- 2019

The PageRank algorithm is used by search engines to rank websites in their search results according to a stable state and not according to the previous local measurement of inner/outer edges from a node that may be manipulated more easily than the corresponding entry in the stable state.

### Distributed PageRank Computation: An Improved Theoretical Study

- Computer ScienceAAAI
- 2019

Improved distributed algorithms for computing PageRank are presented and it is shown that the algorithm can be adapted to efficiently compute another variant of PageRank, i.e., the batch one-hop Personalized PageRanks, in O(log logn) communication rounds.

### Stochastic PageRank maintenance over shared-nothing architectures

- Computer Science
- 2014

This work bridges the gap by proposing the first known efficient stochastic algorithm for PageRank maintenance over distributed shared-nothing architectures, and shows the efficiency and accuracy of the proposed approach, and its superiority compared to the state-of-the-art competitors.

### Distributed Randomized Algorithms for PageRank Computation: Recent Advances

- Computer Science, Mathematics
- 2018

This chapter introduces a new class of distributed algorithms for PageRank based on a simple but novel interpretation and demonstrates that these algorithms have significant advantages in their convergence performances in comparison with other existing techniques.

### Efficient PageRank Computation via Distributed Algorithms with Web Clustering

- Computer Science, MathematicsArXiv
- 2019

This paper proposes a clustering-based scheme, in which groups of pages make updates by locally interacting among themselves many times to expedite the convergence of PageRank, which has significant advantages in their convergence performance.

### Massively Parallel Algorithms for Personalized PageRank

- Computer ScienceProc. VLDB Endow.
- 2021

Delta-Push is an efficient framework for single-source and top-k PPR queries in distributed settings that reduces the number of rounds while guaranteeing that the load, i.e., the maximum number of messages an executor sends or receives in a round, can be bounded by the capacity of each executor.

### Improved Communication Cost in Distributed PageRank Computation - A Theoretical Study

- Computer ScienceICML
- 2020

A new algorithm is provided that uses asymptotically the same communication round complexity while using only O(d log n) bits of bandwidth.

### Edge-based Local Push for Personalized PageRank

- Computer ScienceProc. VLDB Endow.
- 2022

The proposed EdgePush algorithm is a novel method for computing SSPPR queries on weighted graphs that decomposes the aforementioned push operations in edge-based push, allowing the algorithm to operate at the edge level granularity, and flexibly distribute the probabilities according to edge weights.

## References

SHOWING 1-10 OF 29 REFERENCES

### Distributed page ranking in structured P2P networks

- Computer Science2003 International Conference on Parallel Processing, 2003. Proceedings.
- 2003

Open system PageRank is presented based on the traditional PageRank used by Google, and indirect transmission is introduced to reduce communication overhead between page rankers and to achieve scalable communication.

### Fast personalized PageRank on MapReduce

- Computer ScienceSIGMOD '11
- 2011

It is shown that the number of MapReduce iterations used by the algorithm is optimal among a broad family of algorithms for the problem, and its I/O efficiency is much better than the existing candidates.

### Distributed pagerank for P2P systems

- Computer ScienceHigh Performance Distributed Computing, 2003. Proceedings. 12th IEEE International Symposium on
- 2003

This paper defines and describes a fully distributed implementation of Google's highly effective pagerank algorithm, for "peer to peer" (P2P) systems, based on chaotic (asynchronous) iterative solution of linear systems, which provided approximately a ten-fold reduction in network traffic for two-word and three-word querying.

### Fast Incremental and Personalized PageRank

- Computer Science, MathematicsProc. VLDB Endow.
- 2010

The overall result is that this algorithm is fast enough for real-time queries over a dynamic social network.

### Deeper Inside PageRank

- MathematicsInternet Math.
- 2003

A comprehensive survey of all issues associated with PageRank, covering the basic PageRank model, available and recommended solution methods, storage issues, existence, uniqueness, and convergence properties, possible alterations to the basic model, and suggested alternatives to the traditional solution methods.

### Monte Carlo Methods in PageRank Computation: When One Iteration is Sufficient

- Computer Science, MathematicsSIAM J. Numer. Anal.
- 2007

This work proposes and analyzes Monte Carlo-type methods for the PageRank computation and suggests several advantages of the probabilistic Monte Carlo methods over the deterministic power iteration method.

### Local Graph Partitioning using PageRank Vectors

- Mathematics, Computer Science2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06)
- 2006

An improved algorithm for computing approximate PageRank vectors, which allows us to find a cut with conductance at most oslash and approximately optimal balance in time O(m log4 m/oslash) in time proportional to its size.

### A Survey on PageRank Computing

- Computer Science, MathematicsInternet Math.
- 2005

The theoretical foundations of the PageRank formulation are examined, the acceleration of PageRank computing, in the effects of particular aspects of web graph structure on the optimal organization of computations, and in PageRank stability.

### Inside PageRank

- Computer Science, MathematicsTOIT
- 2005

A circuit analysis is introduced that allows to understand the distribution of the page score, the way different Web communities interact each other, the role of dangling pages (pages with no outlinks), and the secrets for promotion of Web pages.

### Estimating PageRank on graph streams

- Computer ScienceJACM
- 2011

In the streaming model, this article shows how to perform several graph computations including estimating the probability distribution after a random walk of length l, the mixing time, and other related quantities such as the conductance of the graph.