Fast Arnold diffusion in systems with three time scales

@inproceedings{Berti2002FastAD,
  title={Fast Arnold diffusion in systems with three time scales},
  author={Massimiliano Berti and Philippe Bolle},
  year={2002}
}
We consider the problem of Arnold Diffusion for nearly integrable partially isochronous Hamiltonian systems with three time scales. By means of a careful shadowing analysis, based on a variational technique, we prove that, along special directions, Arnold diffusion takes place with fast (polynomial) speed, even though the "splitting determinant" is exponentially small. 

References

Publications referenced by this paper.
SHOWING 1-10 OF 24 REFERENCES

E

U. Bessi, L. Chierchia
  • Valdinoci: Upper Bounds on Arnold Diffusion Time via Mather theory, J. Math. Pures Appl., 80
  • 2001
VIEW 4 EXCERPTS
HIGHLY INFLUENTIAL

Three time scales systems exhibiting persistent Arnold’s Diffusion, preprint

A. Pumarino, C. Valls
  • Received April 2001, revised in August
  • 2001
VIEW 3 EXCERPTS

instabilité des systèmes hamiltoniens initialement hyperboliques

J. Cresson Temps d
  • C. R. Acad. Sci. Paris Sér. I Math.,
  • 2001
VIEW 1 EXCERPT

Hamilton - Jacobi equation and existence of hete - roclinic chains in three time scale systems

G. Gentile G. Gallavotti, V. Mastropietro
  • Nonlinearity
  • 2000

P

M. Berti
  • Bolle: Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems, Rend. Mat. Acc. Lincei, s.9, vol. 11,
  • 2000
VIEW 1 EXCERPT

V

G. Gallavotti, G. Gentile
  • Mastropietro: On homoclinic splitting problems, Physica D, 137
  • 2000