# Extremal product-one free sequences in Dihedral and Dicyclic Groups

@article{Martnez2018ExtremalPF, title={Extremal product-one free sequences in Dihedral and Dicyclic Groups}, author={Fabio Enrique Brochero Mart{\'i}nez and S{\'a}vio Ribas}, journal={Discret. Math.}, year={2018}, volume={341}, pages={570-578} }

## 18 Citations

### On Erdős-Ginzburg-ZIV inverse theorems for dihedral and dicyclic groups

- MathematicsIsrael Journal of Mathematics
- 2020

Let G be a finite group and exp( G ) = lcm{ord( g ) ∣ g ∈ G }. A finite unordered sequence of terms from G , where repetition is allowed, is a product-one sequence if its terms can be ordered such…

### A pr 2 01 9 ON MINIMAL PRODUCT-ONE SEQUENCES OF MAXIMAL LENGTH OVER DIHEDRAL AND DICYCLIC GROUPS

- Mathematics, Biology
- 2019

This work provides explicit characterizations of all minimal product- one sequences of length D(G) over Dihedral and Dicyclic groups and studies the unions of sets of lengths of the monoid of product-one sequences over these groups.

### On minimal product-one sequences of maximal length over Dihedral and Dicyclic groups

- Mathematics, Biology
- 2019

This work provides explicit characterizations of all minimal product- one sequences of length $\mathsf D (G)$ over Dihedral and Dicyclic groups and studies the unions of sets of lengths of the monoid of product-one sequences over these groups.

### Extremal product-one free sequences and |G|-product-one free sequences of a metacyclic group

- MathematicsDiscret. Math.
- 2022

### On product-one sequences with congruence conditions over non-abelian groups

- MathematicsJournal of Number Theory
- 2021

### ON PRODUCT-ONE SEQUENCES OVER DIHEDRAL GROUPS ALFRED GEROLDINGER AND DAVID J. GRYNKIEWICZ AND JUN SEOK OH AND QINGHAI ZHONG

- Mathematics
- 2019

Let G be a finite group. A sequence over G means a finite sequence of terms from G, where repetition is allowed and the order is disregarded. A product-one sequence is a sequence whose elements can…

### On product-one sequences over dihedral groups

- MathematicsJournal of Algebra and Its Applications
- 2020

Let [Formula: see text] be a finite group. A sequence over [Formula: see text] means a finite sequence of terms from [Formula: see text], where repetition is allowed and the order is disregarded. A…

### On the direct and inverse zero-sum problems over $C_n \rtimes_s C_2$

- Mathematics
- 2022

Let Cn be the cyclic group of order n. In this paper, we provide the exact values of some zero-sum constants over Cn⋊sC2 where s 6≡ ±1 (mod n), namely η-constant, Gao constant, and ErdősGinzburg-Ziv…

## References

SHOWING 1-10 OF 22 REFERENCES

### Inverse zero-sum problems III

- Mathematics
- 2008

Let G be a nite abelian group. The Davenport constant D(G) is the smallest integer ` 2 N such that every sequence S over G of length jSj ` has a nontrivial zero-sum subsequence. Let G = Cn Cn with n…

### A Combinatorial Problem on Finite Abelian Groups

- Mathematics
- 1996

Abstract In this paper the following theorem is proved. Let G be a finite Abelian group of order n . Then, n + D ( G )−1 is the least integer m with the property that for any sequence of m elements a…

### Inverse zero-sum problems

- Mathematics
- 2007

Let G be an additive finite abelian group with exponent exp(G) = n. We define some central invariants in zero-sum theory: Let • D(G) denote the smallest integer l ∈ N such that every sequence S over…

### Inverse zero-sum problems II

- Mathematics
- 2008

Let $G$ be an additive finite abelian group. A sequence over $G$ is called a minimal zero-sum sequence if the sum of its terms is zero and no proper subsequence has this property. Davenport's…

### The Inverse Problem Associated to the Davenport Constant for C2+C2+C2n, and Applications to the Arithmetical Characterization of Class Groups

- MathematicsElectron. J. Comb.
- 2011

A characterization, via the system of sets of lengths, of the class group of rings of algebraic integers is obtained for certain types of groups, and the Davenport constants of groups of the form C 4 ⊕ C4n and C 6 ⊵ C6n are determined.

### ON ZERO-SUM SEQUENCES IN Z/nZ⊕ Z/nZ

- Mathematics
- 2003

It is well known that the maximal possible length of a minimal zero-sum sequence S in the group Z/nZ⊕Z/nZ equals 2n−1, and we investigate the structure of such sequences. We say that some integer n ≥…

### Conditions for a Zero Sum Modulo n

- MathematicsCanadian Mathematical Bulletin
- 1975

In this paper the following result is proved. Let n > 0 and k ≥ 0 be integers with n — 2k ≥ 1. Given any n — k integers there is a non-empty subset of indices I ⊂ {1, 2,…, n — k} such that the sum…

### Theorem in the Additive Number Theory

- Mathematics

THEOREM. Each set of 2n-1 integers contains some subset of n elements the sum of which is a multiple of n. PROOF. Assume first n = p (p prime). Our theorem is trivial for p = 2, thus henceforth p >…