Figures from this paper
94 Citations
Extremes of regularly varying Lévy-driven mixed moving average processes
- MathematicsAdvances in Applied Probability
- 2005
In this paper, we study the extremal behavior of stationary mixed moving average processes of the form Y(t)=∫ℝ+×ℝ f(r,t-s) dΛ(r,s), t∈ℝ, where f is a deterministic function and Λ is an infinitely…
An invariance principle for sums and record times of regularly varying stationary sequences
- Mathematics
- 2016
We prove a sequence of limiting results about weakly dependent stationary and regularly varying stochastic processes in discrete time. After deducing the limiting distribution for individual clusters…
The tail process and tail measure of continuous time regularly varying stochastic processes
- MathematicsExtremes
- 2021
The goal of this paper is to investigate the tools of extreme value theory originally introduced for discrete time stationary stochastic processes (time series), namely the tail process and the tail…
Submitted to the Annals of Probability SAMPLE PATH LARGE DEVIATIONS FOR LÉVY PROCESSES AND RANDOM WALKS WITH REGULARLY VARYING INCREMENTS By
- Mathematics
- 2018
Let X be a Lévy process with regularly varying Lévy measure ν. We obtain sample-path large deviations for scaled processes X̄n(t) , X(nt)/n and obtain a similar result for random walks with regularly…
Extremal Behavior of Multivariate Mixed Moving Average Processes and of Random Walks with Dependent Increments
- Mathematics
- 2012
The doctoral thesis treats with the extremal behavior of stochastic processes using the concept of regular variation. In particular, finite and infinite-dimensional regular variation is proved for…
Extremal behavior of stochastic integrals driven by regularly varying Levy processes
- Mathematics
- 2005
We study the extremal behavior of a stochastic integral driven by a multivariate Levy process that is regularly varying with index alpha > 0. For predictable integrands with a finite (alpha +…
On regular variation for infinitely divisible random vectors and additive processes
- MathematicsAdvances in Applied Probability
- 2006
We study the tail behavior of regularly varying infinitely divisible random vectors and additive processes, i.e. stochastic processes with independent but not necessarily stationary increments. We…
EXTREMAL BEHAVIOR OF STOCHASTIC INTEGRALS
- Mathematics
- 2005
We study the extremal behavior of a stochastic integral driven by a multivariate Levy process that is regularly varying with index fi > 0. For predictable integrands with a finite (fi + -)-moment,…
Asymptotic Behavior of Eigenvalues of Variance-Covariance Matrix of a High-Dimensional Heavy-Tailed Lévy Process
- Mathematics
- 2020
In this paper, we study the limiting behavior of eigenvalues of the variance-covariance matrix of a random sample from a multivariate subordinator heavy-tailed Levy process, and use large deviations…
Sample path large deviations for Lévy processes and random walks with regularly varying increments
- MathematicsThe Annals of Probability
- 2019
Let $X$ be a L\'evy process with regularly varying L\'evy measure $\nu$. We obtain sample-path large deviations for scaled processes $\bar X_n(t) \triangleq X(nt)/n$ and obtain a similar result for…
References
SHOWING 1-10 OF 27 REFERENCES
Tail probabilities of subadditive functionals acting on Lévy processes
- Mathematics
- 2000
We study the tail behavior of the distribution of certain subadditive functionals acting on the sample paths of L evy processes The functionals we consider have roughly speaking the following…
Topics on fractional Brownian motion and regular variation for stochastic processes
- Mathematics
- 2003
The first part of this thesis studies tail probabilities forelliptical distributions and probabilities of extreme eventsfor multivariate stochastic processes. It is assumed that thetails of the…
Tail Probabilities of Subadditive Functionals of Lévy Processes
- Mathematics
- 2002
We study the tail behavior of the distribution of certain subadditive functionals acting on the sample paths of Lévy processes. The functionals we consider have, roughly speaking, the following…
The sample autocorrelation function of non-linear time series
- Mathematics
- 2000
When studying a real-life time series, it is frequently reasonable to assume, possibly after a suitable transformation, that the data come from a stationary time series (Xt). This means that the…
Max-infinitely divisible and max-stable sample continuous processes
- Mathematics
- 1990
SummaryConditions for a process ζ on a compact metric spaceS to be simultaneously max-infinitely divisible and sample continuous are obtained. Although they fall short of a complete characterization…
On convergence toward an extreme value distribution in C[0,1]
- Mathematics
- 2001
The structure of extreme value distributions in infinite-dimensional space is well known. We characterize the domain of attraction of such extreme-value distributions in the framework of Gine Hahn…
Extreme Values, Regular Variation, and Point Processes
- Mathematics
- 1987
Contents: Preface * Preliminaries * Domains of Attraction and Norming Constants * Quality of Convergence * Point Processes * Records and Extremal Processes * Multivariate Extremes * References *…
The Theory of Stochastic Processes II
- Chemistry, Biology
- 1975
The use of water-immiscible solvents in the process obviates the need for a solvent evaporation stage during isolation of the alpha -aminoacylpenicillin product and thus renders the process of particular advantage in plant-scale operations.
The Theory of Stochastic Processes
- EconomicsThe Mathematical Gazette
- 1967
This book should be of interest to undergraduate and postgraduate students of probability theory.