Corpus ID: 9112858

Explicit reduction modulo $p$ of certain crystalline representations

@article{Buzzard2008ExplicitRM,
  title={Explicit reduction modulo \$p\$ of certain crystalline representations},
  author={Kevin Buzzard and Toby Gee},
  journal={arXiv: Number Theory},
  year={2008}
}
We use the p-adic local Langlands correspondence for GL_2(Q_p) to explicitly compute the reduction modulo p of crystalline representations of small slope, and give applications to modular forms. 
Reductions of modular Galois representations of Slope (2,3)
We compute the semisimplifications of the mod-$p$ reductions of $2$-dimensional crystalline representations of $\Gal(\Qb_p/\Q_p)$ of slope $(2,3)$ and arbitrary weight, building on work ofExpand
An algorithm for computing the reduction mod p of 2-dimensional crystalline representations
We give an algorithm for computing the reduction modulo p of 2-dimensional crystalline representations. This algorithm relies on Fontaine's theory of (phi,Gamma)-modules as well as the theory of WachExpand
SOCLE FILTRATION FOR SOME MODULAR REPRESENTATIONS OF GL2(Fp)
Let p be a prime number and let k ∈ N be an integer. We show an algorithm describing the socle filtration of the modular representations SymF 2 p of GL2(Fp).
Modular forms of arbitrary even weight with no exceptional primes
A result of Dieulefait–Wiese proves the existence of modular eigenforms of weight 2 for which the image of every associated residual Galois representation is as large as possible. We generalize thisExpand
Local constancy for the reduction mod p of 2-dimensional crystalline representations
Irreducible crystalline representations of dimension 2 of Gal(Qpbar/Qp) depend up to twist on two parameters, the weight k and the trace of frobenius a_p. We show that the reduction modulo p of suchExpand
On the Breuil–Mézard conjecture
We give a new local proof of Breuil-Mezard conjecture for two dimensional representations of the absolute Galois group of $\mathbb{Q}_p$, when $p\ge 5$ and the representation has scalar endomorphisms.
Mazur-Tate elements of nonordinary modular forms
We establish formulae for the Iwasawa invariants of Mazur–Tate elements of cuspidal eigenforms, generalizing known results in weight 2. Our first theorem deals with forms of “medium” weight, and ourExpand
Boundedness of denominators of special values of the L-functions for modular forms
For a cuspidal Hecke eigenform F for Spn(Z) and a Dirichlet character χ let L(s, F, χ,St) be the standard L-function of F twisted by χ. In [3], Böcherer showed the boundedness of denominators of theExpand

References

SHOWING 1-10 OF 14 REFERENCES
Construction of some families of 2-dimensional crystalline representations
Abstract.We construct explicitly some analytic families of étale (φ,Γ)-modules, which give rise to analytic families of 2-dimensional crystalline representations. As an application of ourExpand
Sur quelques représentations modulaires et p-adiques de GL2(Qp): I
  • C. Breuil
  • Mathematics
  • Compositio Mathematica
  • 2003
AbstractLet p be a prime number and F a complete local field with residue field of characteristic p. In 1993, Barthel and Livné proved the existence of a new kind of $${\bar F_p }$$ -representationsExpand
On the semi-simplicity of the $U_p$-operator on modular forms
For and positive integers, let denote the -vector space of cuspidal modular forms of level and weight . This vector space is equipped with the usual Hecke operators , . If we need to consider severalExpand
Sur quelques repr\'esentations potentiellement cristallines de GL_2(Q_p)
To each 2-dimensional irreducible p-adic representation of Gal(Qpbar/Qp) which becomes crystalline over an abelian extension of Q_p, we associate a Banach space B(V) endowed with a linear continuousExpand
Formes modulaires de poids $1$
© Gauthier-Villars (Editions scientifiques et medicales Elsevier), 1974, tous droits reserves. L’acces aux archives de la revue « Annales scientifiques de l’E.N.S. » (http://www.Expand
Eigenvalues of Hecke operators on SL(2, Z)
Représentations modulaires de GL 2 (Q p ) et représentations galoisiennes de dimension 2, Asterisque
  • Représentations modulaires de GL 2 (Q p ) et représentations galoisiennes de dimension 2, Asterisque
  • 2008
Sur quelques représentations modulaires et p-adiques de GL 2 (Q p ). I, Compositio Math
  • Sur quelques représentations modulaires et p-adiques de GL 2 (Q p ). I, Compositio Math
  • 2003
Multiplicités modulaires et représentations de GL 2 (Z p ) et de Gal(Q p /Q p ) en l = p, Duke Math
  • J
  • 2002
...
1
2
...