# Explicit near-Ramanujan graphs of every degree

@article{Mohanty2020ExplicitNG, title={Explicit near-Ramanujan graphs of every degree}, author={Sidhanth Mohanty and R. O'Donnell and Pedro Paredes}, journal={Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing}, year={2020} }

For every constant d ≥ 3 and є > 0, we give a deterministic poly(n)-time algorithm that outputs a d-regular graph on Θ(n) vertices that is є-near-Ramanujan; i.e., its eigenvalues are bounded in magnitude by 2√d−1 + є (excluding the single trivial eigenvalue of d).

#### Tables and Topics from this paper

#### 12 Citations

Explicit Expanders of Every Degree and Size

- Computer Science, Mathematics
- ArXiv
- 2020

It is shown that there is a deterministic poly(n) time algorithm that outputs an ( n, d , λ)-graph (on exactly n vertices) with λ ≤ 2 d − 1 + ϵ . Expand

The metric relaxation for 0-extension admits an Ω(log2/3k) gap

- Computer Science, Mathematics
- STOC
- 2021

This work presents an improved integrality gap of Ω(log2/3k) for the metric relaxation, based on the randomized extension of one graph by another, a notion that captures lifts of graphs as a special case and might be of independent interest. Expand

Spectrum preserving short cycle removal on regular graphs

- Computer Science, Mathematics
- STACS
- 2021

We describe a new method to remove short cycles on regular graphs while maintaining spectral bounds (the nontrivial eigenvalues of the adjacency matrix), as long as the graphs have certain… Expand

Explicit near-fully X-Ramanujan graphs

- Mathematics, Computer Science
- 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)
- 2020

G is “eps-near fully X-Ramanujan”, a class of infinite graphs X that can arise in this way and the “eigenvalue relaxation value” for a wide class of average-case degree-2 constraint satisfaction problems is determined. Expand

Graph-Based Construction for Non-Malleable Codes

- Computer Science
- IACR Cryptol. ePrint Arch.
- 2021

Non-malleable codes protect communications against adversarial tampering of data by means of bipartite expander graphs and can have flexible parameters and reduce the encoding space cost in comparison with the explicit codes by Rasmussen and Sahai. Expand

𝓁p-Spread Properties of Sparse Matrices

- Computer Science
- ArXiv
- 2021

Random subspaces of R= of dimension proportional to = are, with high probability, wellspread with respect to the l?-norm (for ? ∈ [1, 2]). Namely, every nonzero G ∈ is “robustly non-sparse” in the… Expand

$\ell_p$-Spread Properties of Sparse Matrices

- Computer Science, Mathematics
- 2021

Random subspaces of R= of dimension proportional to = are, with high probability, wellspread with respect to the l?-norm (for ? ∈ [1, 2]). Namely, every nonzero G ∈ is “robustly non-sparse” in the… Expand

Expander Random Walks: The General Case and Limitations

- Computer Science
- Electron. Colloquium Comput. Complex.
- 2021

First, it is proved that the bound obtained by [CPTS20] for AC circuits is optimal up to a polynomial factor, and improved the known bound for symmetric functions and proves that theBound obtained is optimal (up to a multiplicative constant). Expand

A Spectral Condition for Spectral Gap: Fast Mixing in High-Temperature Ising Models

- Mathematics, Physics
- 2020

We prove that Ising models on the hypercube with general quadratic interactions satisfy a Poincare inequality with respect to the natural Dirichlet form corresponding to Glauber dynamics, as soon as… Expand

Expander random walks: a Fourier-analytic approach

- Computer Science
- Electron. Colloquium Comput. Complex.
- 2020

The first main result is proving that all symmetric functions are fooled by a random walk, and a central limit theorem (CLT) for expander random walks with respect to the total variation distance is proved. Expand

#### References

SHOWING 1-10 OF 78 REFERENCES

Ramanujan graphs

- Mathematics, Computer Science
- Comb.
- 1988

The girth ofX is asymptotically ≧4/3 logk−1 ¦X¦ which gives larger girth than was previously known by explicit or non-explicit constructions. Expand

Lifts, Discrepancy and Nearly Optimal Spectral Gaps

- Mathematics
- 2003

Let G be a graph on n vertices. A 2-lift of G is a graph H on 2n vertices, with a covering map � : H → G. It is not hard to see that all eigenvalues of G are also eigenvalues of H. In addition, H has… Expand

Cubic Ramanujan graphs

- Mathematics, Computer Science
- Comb.
- 1992

A fimily of cubic Ramanujan graph is explicitly constructed. They are realized as Cayley graphs of a certain free group acting on the 3-regular tree; this group is obtained from a definite quaternion… Expand

The Moore Bound for Irregular Graphs

- Mathematics, Computer Science
- Graphs Comb.
- 2002

The Moore bound is extended here to cover irregular graphs as well, yielding an affirmative answer to an old open problem. Expand

Interlacing Families IV: Bipartite Ramanujan Graphs of All Sizes

- Computer Science, Mathematics
- 2015 IEEE 56th Annual Symposium on Foundations of Computer Science
- 2015

It is proved that there exist bipartite Ramanujan graphs of every degree and every number of vertices using the framework of finite free convolutions introduced recently by the authors. Expand

Ramanujan Graphs in Polynomial Time

- Mathematics, Computer Science
- 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)
- 2016

A polynomial time algorithm is provided to compute certain expected characteristic polynomials related to this construction of bipartite Ramanujan (multi) graphs of all degrees and all sizes. Expand

Expander graphs and gaps between primes

- Mathematics
- 2008

Abstract The explicit construction of infinite families of d-regular graphs which are Ramanujan is known only in the case d – 1 is a prime power. In this paper, we consider the case when d – 1 is not… Expand

Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees

- Mathematics, Computer Science
- 2013 IEEE 54th Annual Symposium on Foundations of Computer Science
- 2013

The existence of infinite families of (c, d)-biregular bipartite graphs with all non-trivial eigenvalues bounded by √c-1+√d-1, for all c, d ≥ q 3 is proved. Expand

Explicit Expanders of Every Degree and Size

- Computer Science, Mathematics
- ArXiv
- 2020

It is shown that there is a deterministic poly(n) time algorithm that outputs an ( n, d , λ)-graph (on exactly n vertices) with λ ≤ 2 d − 1 + ϵ . Expand

Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q

- Computer Science, Mathematics
- J. Comb. Theory, Ser. B
- 1994

For any prime power q, explicit constructions for many infinite linear families of q + 1 regular Ramanujan graphs are given as Cayley graphs of PGL2 or PSL2 over finite fields, with respect to very simple generators. Expand