Explicit and Efficient Formulas for the Lattice Point Count in Rational Polygons Using Dedekind - Rademacher Sums

@article{Beck2002ExplicitAE,
  title={Explicit and Efficient Formulas for the Lattice Point Count in Rational Polygons Using Dedekind - Rademacher Sums},
  author={Matthias Beck and Sinai Robins},
  journal={Discrete & Computational Geometry},
  year={2002},
  volume={27},
  pages={443-459}
}
We give explicit, polynomial–time computable formulas for the number of integer points in any two– dimensional rational polygon. A rational polygon is one whose vertices have rational coordinates. We find that the basic building blocks of our formulas are Dedekind–Rademacher sums, which are polynomial–time computable finite Fourier series. As a by–product we rederive a reciprocity law for these sums due to Gessel, which generalizes the reciprocity law for the classical Dedekind sums. In… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-6 of 6 references

Khovanskii , Une application du Théorème de Riemann – Roch combinatoire au polynôme d ’ Ehrhart des polytopes entier de R n

G. A.
Acad . Sci . Paris , Series I • 1997

The Erhart polynomial of a lattice polytope

Das Verhalten der
Annals of Math . • 1997

The Riemann – Roch theorem for integrals and sums of quasipolynomials on virtual polytopes

A. V. Pukhlikov
St . Petersburg Math . J . • 1993

Polynomials associated with finite cell complexes

Ma I. G. Macdonald
J . London Math . Soc . • 1977

Similar Papers

Loading similar papers…