Explicit Hilbert–Kunz functions of 2 × 2 determinantal rings

@article{Miller2015ExplicitHF,
  title={Explicit Hilbert–Kunz functions of 2 × 2 determinantal rings},
  author={L. Miller and I. Swanson},
  journal={Pacific Journal of Mathematics},
  year={2015},
  volume={275},
  pages={433-442}
}
  • L. Miller, I. Swanson
  • Published 2015
  • Mathematics
  • Pacific Journal of Mathematics
  • Let $k[X] = k[x_{i,j}: i = 1,..., m; j = 1,..., n]$ be the polynomial ring in $m n$ variables $x_{i,j}$ over a field $k$ of arbitrary characteristic. Denote by $I_2(X)$ the ideal generated by the $2 \times 2$ minors of the generic $m \times n$ matrix $[x_{i,j}]$. We give a closed formulation for the dimensions of the $k$-vector space $k[X]/(I_2(X) + (x_{1,1}^q,..., x_{m,n}^q))$ as $q$ varies over all positive integers, i.e., we give a closed form for the generalized Hilbert-Kunz function of the… CONTINUE READING
    5 Citations
    F-signature function of quotient singularities
    • 1
    • PDF
    Hilbert-Kunz functions of surface rings of type ADE
    • 3
    • PDF

    References

    SHOWING 1-10 OF 20 REFERENCES
    Hilbert-Kunz Functions for Normal Rings
    • 22
    • PDF
    COMPUTING HILBERT-KUNZ FUNCTIONS OF 1-DIMENSIONAL GRADED RINGS
    • 9
    • PDF
    Multiplicity and Hilbert-Kunz Multiplicity of Monoid Rings
    • 20
    • Highly Influential
    Hilbert-Kunz function of monomial ideals and binomial hypersurfaces
    • 36
    • PDF
    Tight closure and its applications
    • 235
    Ideals of generic minors
    • 26