Experimental and theoretical investigations of ionization/dissociation of cyclopentanone molecule in a femtosecond laser field.

Abstract

The ionization/dissociation mechanism of cyclopentanone has been experimentally investigated in molecular beam by irradiating with intense 394 and 788 nm laser fields with pulse duration of 90 fs. The range of laser intensities varied from 3 x 10(13) to 4 x 10(14) W/cm(2). For both wavelengths, the singly charged parent ion is observable while the doubly charged one cannot be found easily, although the fragmentation pattern supports its presence. Meanwhile, the extent of fragmentation at 788 nm is less than that in the 394 nm case. We quantitatively analyze the ionization processes of cyclopentanone in intense femtosecond laser by comparing the calculation results of ionization rate constants obtained from Ammosov-Delone-Krainov, Keldysh, and Keldysh-Faisal-Reiss (KFR) theories based on hydrogenlike atom model. We also compare the experimental and theoretical results; the generalized KFR theory is found to be useful in predicting the ionization yields of singly and doubly charged cyclopentanone ion. To interpret the dissociation patterns of the cyclopentanone ions, we have used the Rice-Ramsperger-Kassel-Marcus theory with the potential surfaces obtained from the ab initio quantum chemical calculations.

DOI: 10.1063/1.3006028

Cite this paper

@article{Wang2008ExperimentalAT, title={Experimental and theoretical investigations of ionization/dissociation of cyclopentanone molecule in a femtosecond laser field.}, author={Qiaoqiao Wang and Di Wu and Mingxing Jin and Fuchun Liu and Feifei Hu and Xihui Cheng and Hang Liu and Zhan Hu and Dajun Ding and H Mineo and Y A Dyakov and A M Mebel and S D Chao and S H Lin}, journal={The Journal of chemical physics}, year={2008}, volume={129 20}, pages={204302} }