Expansion of the Gateway MultiSite Recombination Cloning Toolkit

Abstract

Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters.

DOI: 10.1371/journal.pone.0077724

Extracted Key Phrases

11 Figures and Tables

02040201520162017
Citations per Year

Citation Velocity: 10

Averaging 10 citations per year over the last 3 years.

Learn more about how we calculate this metric in our FAQ.

Cite this paper

@inproceedings{Shearin2013ExpansionOT, title={Expansion of the Gateway MultiSite Recombination Cloning Toolkit}, author={Harold K. Shearin and Alisa R. Dvarishkis and Craig D. Kozeluh and R. Steven Stowers}, booktitle={PloS one}, year={2013} }